Bees in TVs

Bees are a crucial part of the ecosystem – without bees to act as pollinators, many plant species wouldn’t be able to reproduce at all! It’s unfortunate then that bees are struggling to survive in many parts of the world. However, [Louise Cosgrove] is doing her part – building homes for bees in old television sets.

The project started when Louise’s son-in-law left 100 (!) analog TVs at her home, having already recycled the picture tubes. That sounds kind of impolite to us, but we’ll give them the benefit of the doubt and assume they had some sort of agreement. [Louise] realised the empty television cases had plenty of ventilation and would make ideal homes for bees. By filling the empty boxes with natural materials like wood, bamboo and bark, it creates nesting places that the bees can use to lay their eggs.

We’ve seen bees on Hackaday beefore (tee-hee) – like this beehive wired for remote monitoring.

[Thanks to Stuart Longland for the tip!]

Finding A Use For Surplus Filament Spools

If you’re a heavy user of a 3D printer, or a welder, you’ll know the problem of empty spools. You’ve used up all the filament or the welding wire, and you’re left with a substantial plastic spool. It’s got to be useful for something, you think, and thus it’s Too Good To Throw Away. Before you know it you have a huge pile of the things all looking for a use that you know one day you’ll find.

If you follow the example of [Chuck Hellebuyck], you could use them as wheels for a small go-kart (YouTube link). He 3D-printed some hub adapters for the spools to use skate bearings, mounted them of threaded axles to a classic wooden go-kart frame, and set off downhill wearing his stock-car racing helmet.

Of course, [Chuck]’s go-kart is a bit of fun, but it’s probably fair to say that 3D printer spools are not the ideal wheel. Those rims aren’t particularly durable, and with no tires he’s in for a bumpy ride. Perhaps a tire could be found to fit and a tube placed within it, but that would start to sound expensive against those cheap off-the-shelf wheelbarrow items.

But the project does raise the interesting question: what exactly do you do with your empty spools? There have to be some awesome uses for them, so please share yours in the comments. Meanwhile follow Chuck’s go-kart adventures in the video below the break.

Continue reading “Finding A Use For Surplus Filament Spools”

Impressive Junkyard CNC Made From Fancy Garbage

We’ll just come out and say it, [reboots] has friends with nice garbage. Sure, some of us have friends who are desperately trying to, “gift,” us a CRT monitor, hope dropping like a rock into their stomach when they realize they can’t escape the recycling fee.  [reboots] has friends who buy other people’s poorly thought out CNC projects and then gift him with the parts.

After dismantling the contraption he found himself with nice US and Japanese made linear motion components. However, he needed a CNC controller to drive it all. So he helped another friend clean out their garage and came away with a FlashCut CNC controller.

Now that he had a controller and the motion components whirring nicely, he really needed a frame to put it all in. We like to imagine that he was at a friend’s  barbeque having a beer. In one corner of the yard was an entire Boeing 747.  A mouldering scanning electron microscope with a tattered and faded blue tarp barely covering its delicate instrumentation sat in another corner. Countless tech treasures were scattered about in various states. It was then that he spotted a rusting gamma ray spectrometer in the corner that just happened to have the perfect, rigid, gantry frame for his CNC machine.

Of course, his friend obliged and gladly gave up the spectrometer. Now it was time to put all together. The gantry was set on a scavenged institutional door. The linear motion frames were bolted in place. Quite a few components had to be made, naturally, of scrap materials.

spindletest2Most people will start by using a handheld router for the spindle. The benefits are obvious: they’re inexpensive, easy to procure, and generally come with mounts. But, there are some definite downsides, one of the most glaring of which is the lack of true speed control.

Even routers that allow you to adjust the speed (a fairly common feature on new models) generally don’t actually regulate that speed. So, you end up with a handful of speed settings which aren’t even predictable under load. Furthermore, they usually rely on high RPMs to do their work. For those reasons, handheld woodworking routers aren’t the best choice for a mill that you intend to cut metal with.

[reboots] noticed this problem while building this machine and came up with an inexpensive way to build a speed-controlled spindle. His design uses a brushless DC motor, controlled through a hobby ESC (electronic speed control), which uses a belt to drive the spindle. The spindle itself is mounted using skateboard bearings, and ends in an E11 collet (suitable for light machining in aluminum).

With the ESC providing control of the brushless motor, he’s able to directly control the spindle speed via software. This means that spindle speeds can be changed with G-code, allowing for optimized feeds and speeds for different operations. The belt-drive increases torque while separating the motor from the spindle, which should keep things cool, and reduce rotating mass on the spindle itself. Now all [reboots] needs to do is add a DIY tool changer!

Scratch-Fabricated Plastic Gobbling Shredder Brings Recycling Home

[Jason Knight], an intern at FabLab RUC, has worked hard for 9 months to make a sheet plastics shredder for HDPE and LDPE from things like plastic bags, bubble wrap and air cushion packaging with the goal of recycling the shredded plastic. Why shred these things? When broken down to smaller pieces they can be melted in a consumer grade oven (like where you cook your frozen pizzas) then molded into new objects or extruded into 3D printing filament.

We especially like his big homemade 1.1 inch (30mm) thick wooden gears, for transferring the rotation from the motor to the cutting shafts while giving a step up in torque. As you can see in the video below, the gears definitely add an extra look of power to the machine.

The blades are the shape you most often see in shredders, gear-like disks side-by-side with teeth cut from them that pull the plastic in while shredding it (in contrast to this lower-throughput experimental DIY shredder made with two steel pipes). [Jason’s] multiple teeth are a bit of work to fabricate — not only were all the teeth milled from sheet metal but they then had to be individually sanded to remove burrs from the edges. It was worth it, as this has no problem chewing waste plastics to pieces.

Shredders can be dangerous machines for wandering fingers so [Jason] added a few safety features. Those include a drawer that you open to insert your plastic into the shredding area and a guard that completely surrounds the gears. And both features include transparent plastic areas so that you can still watch the impressive working parts in action.

Continue reading “Scratch-Fabricated Plastic Gobbling Shredder Brings Recycling Home”

Madison Maker Faire

Saturday was the first Madison Mini Maker Faire. In this case, it’s Madison, Wisconsin (sorry Madison, SD I didn’t mean to get your hopes up) where I live. Of course I’m not the only crazy hardware hacker in the area. As soon as I got there I almost tripped over Ben Heckendorn who also lives in the area.

ben-heck-gameboy

Check out that incredible Giant Game Boy the he was exhibiting. Okay, you think to yourself: Raspberry Pi and an LCD. Wrong! He’s actually using an FPGA to drive the LCD. Even cooler, it’s using an original Game Boy brain board, which the FPGA is connected to in order to translate the handheld’s LCD connector signals to work with the big LCD.

Continue reading “Madison Maker Faire”

Think Globally, Build Locally With These Open-Source Recycling Machines

Walk on almost any beach or look on the side of most roads and you’ll see the bottles, bags, and cast-off scraps of a polymeric alphabet soup – HDPE, PET, ABS, PP, PS. Municipal recycling programs might help, but what would really solve the problem would be decentralized recycling, and these open-source plastics recycling machines might just jump-start that effort.

We looked at [Precious Plastic] two years back, and their open-source plans for small-scale plastic recycling machines have come a long way since then. They currently include a shredder, a compression molder, an injection molder, and a filament extruder. The plans specify some parts that need to be custom fabricated, like the shredder’s laser-cut stainless steel teeth, but most can be harvested from a scrapyard. As you can see from the videos after the break, metal and electrical fabrication skills are assumed, but the builds are well within the reach of most hackers. Plans for more machines are in the works, and there’s plenty of room to expand and improve upon the designs.

We think [Precious Plastic] is onto something here. Maybe a lot of small recyclers is a better approach than huge municipal efforts, which don’t seem to be doing much to help.  Decentralized recycling can create markets that large-scale manufacturing can’t be bothered to tap, especially in the developing world. After all, we’ve already seen a plastic recycling factory built from recycled parts making cool stuff in Brazil.

Continue reading “Think Globally, Build Locally With These Open-Source Recycling Machines”

One Hoss Shay and Our Society of Obsolescence

Legend has it that Henry Ford would send engineers out to junkyards all over the US looking for Fords. They were supposed to study each one they found and make note of any parts that had not failed. But it wasn’t so that he could start making all of those parts stronger. Instead, Ford allegedly used this data to determine where he could cut corners in future production runs so as not to waste money by making any part last longer than any other part.

Most things tend to break down rather than completely giving out. Usually it’s only one or two components that stop working and the rest of it is still serviceable. And this is a good thing. It’s what lets us repair PCBs or scavenge parts off them, drive our cars longer, and help save each other’s lives through organ donor programs. Can you imagine how different life would be if each part of every thing failed at the same time?

Continue reading “One Hoss Shay and Our Society of Obsolescence”