Google’s T-Rex Game Ported To The ESP32

Most Chrome users will have come across a neat little Easter egg when their Internet connection has gone down – a game known as “T-Rex” where a dinosaur must be jumped over cactii. Whether or not this is accurate in terms of the evolutionary timeline, it’s a bit of fun, and Volos Projects educator [Danko Bertović] decided to port the game to the ESP32.

The game runs on the LILYGO TTGO T-Display development board, which pairs the powerful microcontroller with a 1.14-inch color LCD. His clone goes as far as authentically replicating the “No Internet” page from within Google Chrome, before kicking into the game at the press of a tactile button.

The game is built using a sprite-based engine, which enables gameplay with a minimum of flickering on the screen. Transparency is included to stop the sprites from occluding other screen elements unnecessarily. [Danko] hasn’t yet released a full tutorial on using sprites on the ESP32, but code is available for your own digestion.

It’s not the first time we’ve seen [Danko]’s ESP32 games, as he’s developed a few over the years. Others have gone so far as coding 8-bit emulators for the platform. Video after the break.

Continue reading “Google’s T-Rex Game Ported To The ESP32”

Mechanical Build Lets You Jump Cacti In Real Life

Simple to learn, hard to master, a lifetime to kick the habit. This applies to a lot of computer games, but the T-rex Runner game for Chrome and its various online versions are particularly insidious. So much so that the game drove one couple to build a real-world version of the digital game.

For those not familiar with the game, it’s a simple side-scroller where the goal is to jump and duck a running dinosaur over and under obstacles — think Flappy Birds, but faster paced. When deciding on a weekend hackathon project, [Uri] thought a real-life version of the game would be a natural fit, since he was already a fan of the digital version. With his girlfriend [Ariella] on the team, [Uri] was able to come up with a minimally playable version of the game, with a stepper motor providing the dino jumps and a simple straight conveyor moving the obstacles. People enjoyed it enough that version 2.0 was planned for the Chrome Developer Summit. This version was much more playable, with an oval track for the obstacles and better scorekeeping. [Uri] and [Ariella] had to expand their skills to complete the build — PCB design, E-Paper displays, laser cutting, and even metal casting were all required. The video below shows the final version — but where are the pterosaurs to duck?

Real-world jumping dinos aren’t the first physical manifestation of a digital game. As in the cyber world, Pong was first — either as an arcade version or a supersized outdoor game.

Continue reading “Mechanical Build Lets You Jump Cacti In Real Life”

T-Rex Runner Runs On Transistor Tester

If you’ve ever spent time online buying electronic doodads — which would mean almost all of us — then sooner or later, the websites get wind of your buying sprees and start offering “suggested” advertisements for buying more useless stuff. One commonly offered popular product seems to be a universal component tester, often referred to as a “Mega328 Transistor Tester Diode Triode Capacitance ESR Meter”. These consist of an ATmega328, an SPI LCD display, a Button, a ZIF socket and a few other components. Almost all of them are cheap clones of the splendid AVR-TransistorTester project by [Markus Frejek]. [Robson Couto] got one of these clone component testers, and after playing with it for a while, decided to hack it and write a T-Rex runner game for it.

The T-Rex runner game is Chrome’s offering for you to while away your time when it can’t connect to the internet. It needs just one button to play. This is just the kind of simple game that can be easily ported to the Component Tester. The nice take away from [Robson]’s blog post is not that he wrote a simple game for an ATmega connected to an LCD display, but the detailed walk through he provides of the process which can be useful to anyone else wanting to dip their feet in the world of writing games.

After a bit of online sleuthing and some multimeter testing, he was able to figure out that the LCD controller chip was connected to Port D of the ATmega, which meant the use of software SPI via bit-banging. He then looked inside the disassembled firmware to find writes to Port D to figure out pin assignments. Of course not long after all this work he found a config.h file with the pin mappings.

Armed with this information he was able to use the Adafruit ST7565 library to drive the LCD, but not before having to flip the image. The modified fork of his ST7565 library is available on GitHub. His game code is also available, but reading through the development process is pretty interesting. Check out a video of the Runner game in action after the break.

In an earlier post, we did a product review of one of these cheap Transistor Testers, and if you have one of these lying around, give [Robson]’s game a spin — it could be handy while you wait for your reflow oven to finish its soldering cycle.

Continue reading “T-Rex Runner Runs On Transistor Tester”

“Superfan” Gaming Peripheral Lets You Feel Your Speed

Virtual reality has come a long way but some senses are still neglected. Until Smell-O-Vision happens, the next step might be feeling the wind in your hair. Perhaps dad racing a sportbike or kids giggling on a rollercoaster. Not as hard to build as you might think, you probably have the parts already.

HAD - Superfan4Off-the-shelf devices serve up the seeing and hearing part of your imaginary environment, but they stop there. [Jared] wanted to take the immersion farther by being able to feel the speed, which meant building his own high power wind generator and tying it into the VR system. The failed crowdfunding effort of the “Petal” meant that something new would have to be constructed. Obviously, to move air without actually going on a rollercoaster requires a motor controller and some fans. Powerful fans.

A proponent of going big or going home, [Jared] picked up a pair of fans and modified them so heavily that they will launch themselves off of the table if not anchored down. Who overdrives fans so hard they need custom heatsinks for the motors? He does. He admits he went overboard and sensibly way overbudget for most people but he built it for himself and does not care.

Continue reading ““Superfan” Gaming Peripheral Lets You Feel Your Speed”

Worried About Haloween This Year? Why Not A Giant T-Rex Costume?

Although some might note that [Jamie]’s creation could mistaken for a Velociraptor or even Allosaurus, his giant T-Rex costume/model is quite a feat of artistry. It stands at over 14 feet tall and 10 feet long. For comparison, the room that you see in the picture above measures 25 x 25 feet. If you happen to live in the Atlanta area, or are willing to travel, this costume is expected to make an appearance at Dragon*Con in 2012, so be sure to look for it there.

The whole thing is made from poly foam plank cut with a CNC router.  It also has a metallic support structure. As noted in the article, you could, in theory, cut all these parts out by hand. Persistence would be required though, since there are over 140 parts!

[Jamie]’s making capabilities are obviously quite advanced at this point, but he’s trying to expand them by winning a router in the Instructables Shopbot contest. If you like his creation, be sure to vote for him! Check out the video of this costume in action after the break. Continue reading “Worried About Haloween This Year? Why Not A Giant T-Rex Costume?”