Retrotechtacular: Fog Over Portland

In the early days of broadcast television, national spectrum regulators struggled to reconcile the relatively huge bandwidth required by the new medium with the limited radio spectrum that could be allocated for it. In the USA during the years immediately following World War Two there was only a 12-channel VHF allocation, which due to the constraints of avoiding interference between adjacent stations led to an insufficient number of possible transmitter sites to cover the entire country. This led the FCC in 1949 to impose a freeze on issuing licences for new transmitters, and left a significant number of American cities unable to catch their I Love Lucy or The Roy Rogers Show episodes.

The solution sought by the FCC was found by releasing a large block of UHF frequencies between 470 and 890 MHz from their wartime military allocation, and thus creating the new channels 14 to 83. An experimental UHF pilot station was set up in Bridgeport, Connecticut in 1949, and by 1952 the FCC was ready to release the freeze on new licence applications. The first American UHF station to go on air was thus KPTV in Portland, Oregon, on September 18th of that year.

UHF TV was a very new technology in 1952, and was close to the edge of what could be achieved through early 1950s consumer electronics. Though the 525-line TV standard and thus the main part of the sets were the same as their VHF counterparts, the tuner designs of the time could not deliver the performance you might expect from more recent sets. Their noise levels, sensitivity, and image rejection characteristics meant that UHF TV reception  did not live up to some of its promise, and thus a fierce battle erupted between manufacturers all keen to demonstrate the inferiority of their competitors’ products over the new medium.

The video below the break delivers a fascinating insight into this world of claim and counter-claim in 1950s consumer electronics, as Zenith, one of the major players, fires salvos into the fray to demonstrate the superiority of their products over competing models or UHF converters for VHF sets. It’s very much from the view of one manufacturer and don’t blame us if it engenders in the viewer a curious desire to run out and buy a 1950s Zenith TV set, but it’s nonetheless worth watching.

A key plank of the Zenith argument concerns their turret tuner. The turret tuner was a channel selection device that switched the set’s RF front end between banks of coils and other components each preset to a particular TV channel. Zenith’s design had a unique selling point that it could be fitted with banks of components for UHF as well as VHF channels thus removing the need for a separate UHF tuner, and furthermore this system was compatible with older Zenith sets so existing owners had no need to upgrade. Particularly of its time in the video in light of today’s electronics is the section demonstrating the clear advantages of Zenith’s germanium mixer diode over its silicon equivalent. Undeniably true in that narrow application using the components of the day, but not something you hear often.

Continue reading “Retrotechtacular: Fog Over Portland”

Can you hear SamSat-218D?

Students of the Samara State Aerospace University are having trouble getting a signal from their satellite, SamSat-218D. They are now reaching out to the radio amateur community, inviting everybody with sufficiently sensitive UHF VHF band (144 MHz) equipment to help by listening to SamSat-218D. The satellite was entirely built by students and went into space on board of a Soyuz-2 rocket on April 26, 2016. This is their call (translated by Google):

Continue reading “Can you hear SamSat-218D?”

Weightless IoT Hardware Virtually Unavailable

It has been over 2 years since we last mentioned the Weightless SIG and their claims of an IoT open standard chip with a 10 year battery life and 10km wireless range, all at a jaw dropping price of $2 per chip. There was a planned production run of the 3rd gen chips which I would suspect went to beta testers or didn’t make it into production since we didn’t hear anything else, for years.

Recently, a company called nwave began producing dev-kits using the Weightless Technology which you can see in the banner image up top. Although the hardware exists it is a very small run and only available to members of the development team. If you happen to have been on the Weightless mailing list when the Weightless-N SDK was announced there was an offer to get a “free” development board to the first 100 development members. I use bunny ears on free because in order to become a member of the developer team you have to pay a yearly fee of £900. Don’t abrasively “pffffft” just yet, if you happened to be one first 100 there was an offer for developers that came up with a product and submitted it back for certification to get their £900 refunded to them. It’s not the best deal going, but the incentive to follow through with a product is an interesting take.

Continue reading “Weightless IoT Hardware Virtually Unavailable”

Hackaday Prize Finalist: A Portable SDR

No other project to make it to The Hackaday Prize has people throwing money at their computer screen hoping something would happen than [Michael Colton]’s PortableSDR. It’s a software defined radio designed for coverage up to 30MHz. Amateur radio operators across the world are interested in this project, going so far as to call this the first Baofeng UV-5R killer. That’s extremely high praise.

[Michael] was kind enough to sit down and answer a few questions about how his entry to The Hackaday Prize has gone. You can check that out below, along with the final round video of the project. Anyone who wants their own PortableSDR could really help [Michael] out by taking this survey.

Continue reading “Hackaday Prize Finalist: A Portable SDR”

Tape Measure VHF Yagi Antenna

tap measure yagi vhf antenna

Radio direction finding and fox hunting can be great fun and is a popular activity with amateur radio (ham radio) enthusiasts. These antennas are great and are not only good for finding transmitters but also will greatly increase directional distance performance including communicating with satellites and the international space station (ISS).

[jcoman] had a nephew who was interested in learning about amateur radio so [jcoman] figured building and using a cheap and portable 2 meter band VHF Yagi style beam antenna would be the perfect activity to captivate the young lad’s interest in the hobby.

His design is based on [Joe Leggio’s] (WB2HOL) design with some of his own calculated alterations. We have seen DIY Yagi antenna designs before but what makes this construction so interesting is that the elements come together using bits of cut metal tape measure sections. These tape measure sections allow the Yagi antenna, which is normally a large and cumbersome device, to be easily stowed in a vehicle or backpack. When the antenna is needed, the tape measure sections naturally unfold and function extremely well with a 7 dB directional gain and can be adjusted to get a 1:1 SWR at any desired 2 m frequency.

The other unique feature is that the antenna can be constructed for under $20 if you actually purchase the materials. The cost would be even less if you salvage an old tape measure. You might even have the PVC pipes, hose clamps and wire lying around making the construction nearly free.

We were quite surprised to find that such a popular antenna construction method using tape measure elements had not yet been featured on Hackaday. For completeness this is not the only DIY tape measure Yagi on Instructables so also check out [FN64’s] 2 m band “Radio Direction Finding Antenna for VHF” and [manuka’s] 70 cm band “433 MHz tape measure UHF antenna” postings. The other Yagi antenna designs featured on Hackaday were “Building a Yagi Uda Antenna” and “Turning an Easter Egg Hunt into a Fox Hunt” but these designs were not so simple to construct nor as cleverly portable.

Weightless, the Internet of Things Chip, Becomes Less Vaporware


Several months ago, we caught wind of Weightless, a $2 chip that will run for 10 years on a AA battery and communicate to a Weightless base station 10 Km away. Yes, this is the fabled Internet of Things chip that will allow sensors of every type to communicate with servers around the world. It looks like Weightless is becoming less and less vaporware, as evidenced by the Weightless SIG hardware roadmap; Weightless modules might be in the hands of makers and designers in just a few short months.

Weightless is an extremely low-cost wireless module that operates in the radio spectrum previously occupied by analog broadcast television. This is a great place for the Internet of Things, as signals in this spectrum have a lot of range and the ability to go through walls. These signals are sent to a Weightless base station where they are then sent over the Internet to servers around the world.

The Weightless SIG has been hard at work producing new silicon, with the third generation of chips heading for volume production next month. The only thing this chip requires is a battery and an antenna, making Weightless integration for new designs and projects a snap.

There’s one thing Weightless is not, and that’s a free, high-speed connection to the Internet with a $2 adapter. Weightless is designed for sensors that only transmit a kilobyte or so a day – medical sensors, irrigation control, and other relatively boring things. There’s a summary video from the recent 2013 Weightless SIG Summit going over all this information below.

Continue reading “Weightless, the Internet of Things Chip, Becomes Less Vaporware”

UHF power harvesting


[Alanson Sample] and [Joshua R. Smith] have been experimenting with wireless power transfer for their sensing platform. Their microcontroller of choice is the MSP430, which we used on our e-paper clock. They chose it specifically for its ability to work with low voltages and they discus its specific behavior at different voltages. The first portion of their paper uses a UHF RFID reader to transmit to the sensor’s four stage charge pump. They added a supercap to provide enough power for 24 hours of logging while the node isn’t near a reader. For the second half of the paper, they use a UHF antenna designed for digital TV with the same circuit and pointed it at a television tower ~4.1km away. It had an open circuit voltage of 5.0V and 0.7V across an 8KOhm load, which works out to be 60uW of power. They connected this to the AAA battery terminals of the thermometer/hygrometer pictured above. It worked without issue. The thermometer’s draw on a lab power supply was 25uA at 1.5V.

It’s an interesting approach to powering devices. Do you have an application that needs something like this? For more on wireless power, checkout this earlier post on scratch building RFID tags.

[via DVICE]