More Continuous Wave Radar Fun

[Gregory Charvat] continues to have a great time testing out radar systems. He and a friend have pointed the radar out the garage door and are using it to see who can reach a high running velocity.

The last time we looked in on [Greg’s] work he had acquired an old police radar unit and wired it up to use with a laptop. The hardware he’s working with now is a lot more bulky and we don’t think it will be hitting the road with him anytime soon (although it is on wheels). The video after the break starts off which an overview of the test system which is mounted in a waist-high rack. He illustrates how Labview is monitoring the radar inputs and then moves on to show off the hardware which is actually harvesting the data. The box is quite versatile, able to run five different systems and includes a slew of different connector types.

Continue reading “More Continuous Wave Radar Fun”

Cutting Styrofoam With A CNC Machine And Turning It Into Aluminum

One of the most popular ways of turning an object trapped inside the world of a computer into a real, metal object is the art of lost wax, or lost foam casting. In this process, a full-scale model of the object to be made in metal is crafted in either foam or wax, placed in a pile of sand, and burned away by molten metal.

[ptflea] over at the Bamberg, Germany hackerspace Backspace came up with a very clever build that automatically cuts foam into the desired shape, ready to be taken out to the backyard foundry. The build is based around an old flatbed scanner and a hot wire cutter. The old scanner conveniently had  an equal number of steps per axis, so attaching an Adafruit motor shield and replacing the old control electronics was just an issue of finding the correct resistors.

Software control is provided by a Processing app [ptflea] whipped up and is able to carefully cut very delicate shapes that even the steadiest hand would have trouble with.

Making stuff out of styrofoam is cool and all, but the real goal for this project was setting things on fire and melting old heatsinks. The styrofoam molds were placed in a bucket full of sand, and the furnace – a few ytong bricks, a crucible, and a propane burner – started to melt some aluminum. The molten aluminum was poured onto the mold and after cooling, the makers of Backspace had a few very cool aluminum trinkets.

A nice build that is able to produce some very nice metal objects. We suspect, though, that a higher-density foam (something along the lines of blue or green insulation sheets, if they have those in Germany) could produce an even higher level of detail if you’d like to build your own.

Videos after the break.

Continue reading “Cutting Styrofoam With A CNC Machine And Turning It Into Aluminum”

Bathroom Fan That Switches Itself On When It Gets Steamy Or Smelly

At first we thought that [Brandon Dunson] was writing in to tell us he’s too lazy to fix his bathroom fan. What he really meant is that simply replacing the unit isn’t nearly enough fun. Instead, he developed his own bathroom fan trigger based on stinky or humid air conditions. He didn’t publish a post about the project but we’ve got his entire gallery of build images after the break.

The initial inspiration for the project came from a twitter-connected fart sensing office chair. Hiding behind the character display you can see the MQ-4 methane gas sensor which he picked up for the project. But since there’s also a shower in the bathroom he included a humidity sensor with the project. Both are monitored by an ATmega328 which averages 10 readings from each sensor before comparing the data with a set threshold. If the sensors read above this level a relay turns on the bathroom fan.

Don’t be confused by the small DC fans seen above; [Brandon] is still using a proper exhaust fan. These are just used to help circulate the air around the sensors so that low-hanging smells will still trigger the system. This has got to be the perfect thing for a heavily used restroom.

Continue reading “Bathroom Fan That Switches Itself On When It Gets Steamy Or Smelly”

Raspberry Pi Reaches Critical Mass As XBMC Hardware

For years I’ve been dreaming of a streaming media device that could just be stuck to the back of a television. Since XBMC has been far and away my favorite set-top box software, I’ve closely monitored hardware developments that can run that package. Now I think it’s time to declare that the Raspberry Pi has achieved the base specifications to be branded the XBMC device that rules them all.

There are a huge range of opinions on this topic, but please hear me out after the break to see what has brought me to this conclusion.

Continue reading “Raspberry Pi Reaches Critical Mass As XBMC Hardware”

MSP430 Launchpad Game Of Life Shield

[100uf] built an LED matrix shield for the MSP430 launchpad. His goal with this design was to have it play Conway’s Game of Life. It does just that, as you can see in the clip after the break. But it’s just waiting to learn some more tricks. After he tires of watching the cellular automaton he can try his hand at making some LED pendant animations.

As you can tell, the board was made in his home workshop. It’s not etched, but milled using the CNC machine shown in this image gallery. This is a single-sided PCB, which works well enough for the surface mount components and the downward facing pin sockets. But we wonder how difficult it was to solder the legs of that 8×8 LED matrix. It does have plastic feet at each corner that serve as standoffs to separate the body from the copper layer. But it still looks like a tight space into which he needed to get his iron and some solder.

Continue reading “MSP430 Launchpad Game Of Life Shield”

Tearing Down The Wii U

With the release of the Wii U last weekend we knew it wouldn’t be long before we saw those glorious gut shots on the Internet. The folks at iFixit have torn down a Wii U, and the insides look somewhat promising for a potential hack to take control of the Wii U Game Pad.

The components in the Wii U console aren’t terribly surprising; a few wireless controllers, HDMI adapters, Flash memory chips, and the IBM Power CPU make up most of the interesting components. The insides of the GamePad, though, look pretty interesting. It appears the Wii U GamePad is powered by an ARM Cortex microcontroller built by STMicroelectronics, but the part numbers for the major ICs on the GamePad board are impervious to Googling.

Of course there’s still the question of how video is transmitted wirelessly from the Wii U console to the GamePad. iFixit found a Broadcom BCM4319XKUBG Wireless module that operates on normal WiFi frequencies. This module has been used in a few other pieces of video gear, most notably the Boxee Box, so there is some possibility of intercepting the video signal transmitted to the GamePad and figuring out the protocol.

The long and short of iFixit’s teardown, at least from the hacker perspective, is that all the interesting parts use hardware similar to what you’d find on any other eminently hackable device. Here’s to hoping we get an open Wii U GamePad before the year is out.

Optimizing Your Electronics Projects With A Camera

What do you do when you have a microcontroller you’re trying to optimize? One method is using a debugger, but for AVRs and such that’s not a very common technique. For lower-level electronics projects, it’s nearly impossible, even. [Cnlohr] built a small Minecraft server that listens to in-game redstone circuits, but the performance of his real-world to block-world bridge wasn’t what he hoped. He came up with a pretty clever way of figuring out what was slowing his server down without any special gear at all.

[cnlohr]’s Minecraft server is just a simple AVR microcontroller, Ethernet adapter, and SD card affixed to a beautiful glass PCB. The performance of his server wasn’t what he expected; downloading a largish file from the server resulted in a download rate of about 55kbps, much slower than he expected. He wasn’t quite sure what the hangup was, so he took a camera and with a long exposure time took a very blurry picture.

The Minecraft server has a blue LED to show when the SD card was being accessed. In the picture above, [cnlohr] saw that SD card access was taking far too long, and if he wanted to optimize the code this would be the place to start.

Not bad for a dead-simple method of seeing where the code on your microcontroller project is slowing down.

Continue reading “Optimizing Your Electronics Projects With A Camera”