Donuts Of ShmooCon

This weekend is ShmooCon, a hacker convention held in Washington DC. Brian Benchoff and I will be there, both of us for the first time. We’d love your input on what talks look the most interesting. Check out the schedule of speakers, then leave a comment below to let us know which talks you think we should cover.

It’s great hearing the big presentations, but I find a lot of times great hacks can be found in smaller venues, or just by walking around. Two examples from 2015 DEF CON: the best talk I sat in on had about 10 people spectating in the IoT village, and I had a great time trying to track down everyone who had an unofficial hardware badge. If you’re at ShmooCon and have something to show off, please find us (@szczys, @bbenchoff)!

On Saturday join us for a Hackaday meetup in the lobby of the Washington Hilton. ShmooCon is well-regarded for the quality of its “lobby-con”, what better place to gather? Look for the Hackaday crowd starting Saturday 1/16 at 8:45am. We’ll bring the donuts, and some swag like Hackaday Omnibus Vol. 02 and of course, some Jolly Wrencher stickers.

Even Easier Toner Transfer PCBs

One of the most popular methods of homebrew PCB fabrication is the toner transfer process. Compared to UV-sensitive films and CNC mills, the toner transfer process is fantastically simple and only requires a laser printer. Being simple doesn’t mean it’s easy, though, and successful toner transfer depends on melting the toner to transfer it from a piece of paper to a copper clad board.

This is heatless toner transfer for PCB fabrication. Instead of using a clothes iron or laminator to transfer toner from a paper to board, [simpletronic] is doing it chemically using acetone and alcohol.

Acetone usually dissolves laser printer toner, and while this is useful for transferring a PCB from paper to board, it alone is insufficient. By using a mixture of eight parts alcohol to three parts acetone, [simpletronic] can make the toner on a piece of paper stick, but not enough to dissolve the toner or make it blur.

From there, it’s a simple matter of putting a piece of paper down on copper clad board. After waiting a few minutes, the paper peels off revealing perfectly transferred board art. All the usual etching techniques can be used to remove copper and fabricate a PCB.

This is an entirely novel method of PCB fabrication, but it’s not exactly original. A few days ago, we saw a very similar method of transferring laser printed graphics to cloth, wood, and metal. While these are probably independent discoveries, it is great evidence there are still new techniques and new ways of doing things left to be discovered.

Thanks [fridgefire] for the tip.

Hackers And Heroes: Rise Of The CCC And Hackerspaces

From its roots in phone phreaking to the crackdowns and legal precedents that drove hacking mostly underground (or into business), hacker culture in the United States has seen a lot over the last three decades. Perhaps the biggest standout is the L0pht, a visible 1990s US hackerspace that engaged in open disclosure and was, arguably, the last of the publicly influential US hacker groups.

The details of the American hacker scene were well covered in my article yesterday. It ended on a bit of a down note. The L0pht is long gone, and no other groups that I know of have matched their mix of social responsibility and public visibility. This is a shame because a lot of hacker-relevant issues are getting decided in the USA right now, and largely without our input.

Chaos Computer Club

But let’s turn away from the USA and catch up with Germany. In the early 1980s, in Germany as in America, there were many local computer clubs that were not much more than a monthly evening in a cafeteria or a science museum or (as was the case with the CCC) a newspaper office. Early computer enthusiasts traded know-how, and software, for free. At least in America, nothing was more formally arranged than was necessary to secure a meeting space: we all knew when to show up, so what more needed to be done?

Things are a little different in the German soul. Peer inside and you’ll find the “Vereinsmentalität” — a “club-mentality”. Most any hobby or sport that you can do in Germany has an associated club that you can join. Winter biathlon, bee-keeping, watercolor painting, or hacking: when Germans do fun stuff, they like to get organized and do fun stuff together.

Continue reading “Hackers And Heroes: Rise Of The CCC And Hackerspaces”

Powerful Crossbow Is Almost Entirely 3D Printed

As it turns out, it’s not feasible to print an entire crossbow yet. But [Dan]’s crossbow build does a good job of leveraging what a 3D printer is good at. Most of the printed parts reside in the crossbow’s trigger group, and the diagrams in the write-up clearly show how the trigger, sear and safety all interact. Particularly nice is the automatic nature of the safety, which is engaged by drawing back the string. We also like the printed spring that keeps the quarrel in place on the bridle, and the Picatinny rail for mounting a scope. Non-printed parts include the aluminum tubes used in the stocks, and the bow itself, a composite design with fiberglass rods inside PVC pipe. The video below shows the crossbow in action, and it looks pretty powerful.

Actually, we’ll partially retract our earlier dismissal of entirely 3D-printed crossbows, but [Dan]’s version is a lot more practical and useful than this model. And for a more traditional crossbow design, check out this entirely hand-made crossbow.

Continue reading “Powerful Crossbow Is Almost Entirely 3D Printed”

LUX Searches In The Deep For Dark Matter

The Homestake Mine started yielding gold in 1876. If you had asked George Hearst, the operator at the time, if the mine would someday yield the secrets of the universe I bet he would have laughed you out of the room. But sure enough, by 1960 a laboratory deep in the mine started doing just that. Many experiments have been conducted there in the five and a half decades since. The Large Underground Xenon (LUX) experiment is one of them, and has been running is what is now called the Sanford Underground Research Facility (SURF) for about four years. LUX’s first round of data was collected in 2013, with the experiment and the rest of the data slated to conclude in 2016. The method, hardware, and results wrapped up in LUX are utterly fascinating.

Continue reading “LUX Searches In The Deep For Dark Matter”

Hacking Chipped 3D Printer Filament On The Da Vinci Printer

XYZ Printing has been selling 3D printers for years now with one very special feature not found in more mainstream printers. They’re using a chipped filament cartridge with a small chip inside each of their proprietary filament cartridges, meaning you can only use their filament. It’s the Gillette and ink jet model – sell the printer cheap, and make their money back on filament cartridges.

Last week at CES, XYZ Printing introduced their cheapest printer yet. It’s called the da Vinci Mini, a printer with a 15x15x15 cm build volume that costs only $269. Needless to say, a lot of these will be sold. A lot of people will also be disappointed with chipped filament cartridges in the coming months, so here’s how you defeat the latest version of chipped filament.

A little bit of research showed [WB6CQA] the latest versions of XYZ Printing’s filament uses an NFC chip. Just like the earlier EEPROM version, the latest spools of filament just store a value in memory without any encryption. [WB6CQA] pulled a board from the printer, connected it up to a logic analyzer, and checked out the data sheet for the NFC chip, giving him access to the data on the filament chip.

After running a few prints and comparing the data before and after, [WB6CQA] found a few values that changed. These values could be written back to their previous values, effectively resetting the chip in the filament and allowing third party filament to be used in this printer. It’s a kludge, but it works. More effort will be needed to remove the need to capture data with logic analyzers, but we’re well on our way to chipless filament on da Vinci printers.

String Racing Robots Are Here !

This could be the start of a new thing. [HarpDude] showed off his String Car Racers over on the Adafruit forum. It’s like a small model cable car on caffeine. String up enough of them and go head to head racing with others.

A motor with a small pulley runs over a length of string stretched between 2 posts. Below the pulley, acting as a counterweight balance, is the rest of the racer. A Trinket board, motor driver, 9V battery and a pair of long lever micro switches to detect end of travel. The switches also help reverse the motor. A piece of galvanized wire acts as a guide preventing the String Car from jumping off the string. And discovering the benefits of a micro-controller design, as against discrete TTL/CMOS, old timer [HarpDude] added two operational modes via software. “Pong”, where the String Car keeps going back and forth over the string until it stops of (battery) exhaustion. The other mode is “Boomerang” – a single return trip back and forth.

We are guessing the next upgrade would be to add some kind of radio on the car (ESP8266 perhaps) and build an app to control the String Car. That’s when gaming could become fun as it opens up possibilities. One way to improve performance would be to add two “idler” pulleys in line with the main drive pulley, and then snake the string through the three of them. Now you know what to do with all of those old motors you’ve scavenged from tape drives, CD drives and printers. Let the Games begin!

Thanks [Mike Stone] for tipping us off on this.