DIY Gimbal For The Raspberry Pi Camera

If one wants a stabilized video feed from a drone, a gimbal setup is the way to go. However, the cheaper offerings are all rather similar, suited to a certain size and type of drone. [Jean] was building a smaller craft, so set out to create his own design specifically fit for purpose.

The build begins in the CAD suite, with a series of 3D printed parts designed to link together with a pair of brushless motors to make a 2-axis set up. After printing, the gimbal arms are bolted together with the motors and the camera and IMU are installed, with everything being wired up to a GLB MiniSTorM32 brushless gimbal controller. These controllers make the process of building a gimbal easy, meaning that individual makers don’t have to go to the trouble of designing motor controller circuitry again and again.

The final result is a compact gimbal sized perfectly for the Raspberry Pi camera in [Jean]’s design. If you’re very particular about your gimbal’s performance, building your own doesn’t hurt. Video after the break.

Continue reading “DIY Gimbal For The Raspberry Pi Camera”

Apollo’s PLSS And The Science Of Keeping Humans Alive In Space

Ever since humans came up with the bright idea to explore parts of the Earth which were significantly less hospitable to human life than the plains of Africa where humankind evolved, there’s been a constant pressure to better protect ourselves against the elements to keep our bodies comfortable. Those first tests of a new frontier required little more than a warm set of clothes. Over the course of millennia, challenging those frontiers became more and more difficult. In the modern age we set our sights on altitude and space, where a warm set of clothes won’t do much to protect you.

With the launch of Sputnik in 1957 and the heating up of the space race between the US and USSR, many firsts had to be accomplished with minimal time for testing and refinement. From developing 1945’s then state-of-the-art V-2 sounding rockets into something capable of launching people to the moon and beyond, to finding out what would be required to keep people alive in Earth orbit and on the Moon. Let’s take a look at what was required to make this technological marvel happen, and develop the Portable Life Support System — an essential component of those space suits that kept astronauts so comfortable they were able to crack jokes while standing on the surface of the Moon.

Continue reading “Apollo’s PLSS And The Science Of Keeping Humans Alive In Space”

Warshipping: A Free Raspberry Pi In The Mail Is Not Always A Welcome Gift

Leading edge computer security is veiled in secrecy — a world where novel attacks are sprung on those who do not yet know what they need to protect against. Once certain tactics have played out within cool kids’ circles, they are introduced to the rest of the world. An IBM red team presented what they’re calling “warshipping”: sending an adversarial network to you in a box.

Companies concerned about security have learned to protect their internet-accessible points of entry. Patrolling guards know to look for potential wardrivers parked near or repeatedly circling the grounds. But some are comparatively lax about their shipping & receiving, and they are the ideal targets for warshipping.

Bypassing internet firewalls and security perimeters, attack hardware is embedded inside a shipping box and delivered by any of the common carriers. Security guards may hassle a van bristling with antennas, but they’ll wave a FedEx truck right through! The hardware can be programmed to stay dormant through screening, waiting to probe once inside the walls.

The presentation described several ways to implement such an attack. There is nothing novel about the raw hardware – Raspberry Pi, GPS receiver, cellular modems, and such are standard fare for various projects on these pages. The creative part is the software and in how they are hidden: in packing material and in innocuous looking plush toys. Or for persistence, they can be hidden in a wall mounted plaque alongside some discreet photovoltaic panels. (Editor’s note: What? No Great Seals?)

With this particular technique out in the open, we’re sure others are already in use and will be disclosed some years down the line. In the meantime, we can focus our efforts on more benign applications of similar technology, whether it is spying on our cat or finding the nearest fast food joint. The hardware is evolving as well: a Raspberry Pi actually seems rather heavyweight for this, how about a compact PCB with both an ESP32 and a cellular modem?

Via Ars Technica.

The Thermochromic Display You Didn’t Know You Needed

We love unique ways of displaying data here at Hackaday, and this ingenious thermochromic display created by [Moritz v. Sivers] more than fits the bill. Using sheets of color changing liquid crystals and careful temperature control of the plates they’re mounted on, he’s built a giant seven-segment display that can colorfully (albeit somewhat slowly) show the current temperature and humidity.

The sheets of temperature sensitive liquid crystals are a bit like flattened out Mood Rings; they starts out black, but as heat is applied, their color cycles through vibrant reds, greens, and blues. The sheets are perhaps best known as the sort of vaguely scientific toys you might see in a museum gift shop, but here [Moritz] has put their unique properties to practical use.

To achieve the effect, he first cut each segment out of copper. The crystal sheets were applied to the segments, thanks to their handy self-stick backing, and the excess was carefully trimmed away. Each segment was then mounted to a TES1-12704 Peltier module by way of thermally conductive epoxy. TB6612FNG motor controllers and a bevy of Arduino Nano’s are used to control the Peltier modules, raising and lowering their temperature as necessary to get the desired effect.

You can see the final result in the video after the break. It’s easily one of the most attractive variations on the classic seven-segment display we’ve ever seen. In fact, we’d go as far as to say it could pass for an art installation. The idea of a device that shows the current temperature by heating itself up certainly has a thoughtful aspect to it.

This actually isn’t the first display we’ve seen that utilized this concept, though it’s by far the largest. Back in 2014 we featured a small flexible display that used nichrome wires to “print” digits on a sheet of liquid crystals.

Continue reading “The Thermochromic Display You Didn’t Know You Needed”