2023 Cyberdeck Contest: A Toddler’s Cyberdeck

[Josh] has a child and what do children like more than stuffing random things into their mouths? Pushing buttons, twiddling knobs, and yanking things of course! So [Josh] did what any self-respecting hacker would do and built his little man a custom cyberdeck.

The build follows the usual route of some electronics wedged into a pelican-style waterproof case — which is a good choice for this particular owner — a repurposed all-in-one LCD video player in the lid and a bunch of switches in the base. The player is apparently a V100-base SBC the likes of which are used in shops for those annoying looping promotional videos, but it doesn’t really matter if all it’s doing is being a focus point.

There is no connection from the base to the ‘display’ but that doesn’t matter here. The base is the fun part, with lots of old-school toggle switches and rotary knobs to play with and a load of LEDs to flash in mysterious ways. The guts of this are controlled via an Arduino Mega 2560, with copious amounts of hot glue on display in true hacker style. On the coding side of things, [Josh] used ChatGPT to produce the code from his prompting and Wokwi  to simulate it before deployment to the hardware.

China May Have A New Submarine Tracking Technology

Submarines have always been about stealth; that’s always been the whole point of putting them underwater. Tracking them can be difficult, even to this day, but China may have a new technique to help in this endeavour, as reported by the South China Morning Post.

Nuclear missile subs are nicknamed “boomers,” and can spend months underwater. Tracking them is of prime concern to many countries around the world. US Navy

The news comes from a study published in a Chinese journal, regarding detection of the most advanced American submarines. The stealthiest examples use all kinds of sophisticated systems to damp vibrations and reduce acoustic signatures to make detection as hard as possible. However, a new type of magnetic detector could change all that.

A research team used computer simulations to determine whether nuclear-powered submarines could be detected via the bubbles produced when cruising at high speed underwater. When these bubbles inevitably collapse, it can apparently produce a detectable signal that is orders of magnitude higher than the sensitivity of the best magnetic anomaly detectors. The signal is found on the order of 34.19 to 49.94 Hz, deep in the ELF range, according to researchers.

This could yet create another arms race, as submarine designers begin designing vessels to reduce bubble shedding at speed. Or, for all we know, this is already a well-known principle in the high-stakes world of submarine surveillance and combat. If you’re in the know, please don’t reveal any classified information in the comments section. It’s not worth your job or ours! If you recreate such a detector at home in a non-treasonous manner, though, don’t hesitate to let us know!

Hackaday Prize 2023: Universal Tensile Testing Machine

Material testing is important in big industry, where manufacturers must be able to trust the properties of the raw materials they’re using. The rest of us generally take a supplier’s word for it that they’re giving us what we’ve paid for. However, you could always take on material testing yourself with the Universal Tensile Testing Machine from [Xieshi Zhang].

Unlike a six-figure industrial machine, this build is much more affordable, costing on the order of $300 to build. It uses an Arduino to read a tensile strain gauge, and is capable of applying up to a kilonewton of force. To achieve this, it uses a NEMA 17 stepper motor driving a lead screw to apply tensile strain or compression to the specimen under test.  The test fixture is assembled from 3D-printed components, and built on top of a piece of aluminium extrusion.

Fundamentally, it’s a smaller version of a machine most engineering undergraduates will see in a materials lab experiment. It could be highly useful for anyone wanting to experiment with 3D printed structures; it would be more than capable of testing various filaments and infill types for their tensile and compression performance. Video after the break.

Continue reading “Hackaday Prize 2023: Universal Tensile Testing Machine”

Litter Box Sensor Lets You Know Exactly What The Cat’s Been Up To

In our experience, there’s rarely any question when the cat uses the litter box. At all. In the entire house. For hours. And while it may be instantly obvious to the most casual observer that it’s time to clean the thing out, that doesn’t mean there’s no value in quantifying your feline friend’s noxious vapors. For science.

Now of course, [Owen Ashurst] could have opted for one of those fancy automated litter boxes, the kind that detects when a cat has made a deposit and uses various methods to sweep it away and prepare the box for the next use, with varying degrees of success. These machines seem like great ideas, and generally work pretty well out of the box, but — well, let’s just say that a value-engineered system can only last so long under extreme conditions. So a plain old-fashioned litterbox suffices for [Owen], except with a few special modifications. A NodeMCU lives inside the modesty cover of the box, along with a PIR sensor to detect the cat’s presence, as well as an MQ135 air quality sensor to monitor for gasses. It seems an appropriate choice, since the sensor responds to ammonia and sulfides — both likely to be present after a deposit. Continue reading “Litter Box Sensor Lets You Know Exactly What The Cat’s Been Up To”

Angry Robot Face Is Less Than Friendly

Sometimes you just need to create a creepy robot head and give it an intimidating personality. [Jens] has done just that, and ably so, with his latest eerie creation.

The robot face is introduced to us with a soundtrack befitting Stranger Things, or maybe Luke Million. The build was inspired by The Doorman, a creepy art piece with animatronic eyes. [Jens’] build started with a 3D model of a 3D mask, with the eyes and mouth modified to have rectangular cutouts for LED displays. The displays are run by a Raspberry Pi Pico, which generates a variety of eye and mouth animations. It uses a camera for face tracking, so the robot’s evil eyes seem to follow the viewer as they move around. In good form, the face has a simple switch—from good to evil, happy to angry. Or, as [Jens] designates the modes: “Fren” and “Not Fren.”

[Jens] does a great job explaining the build, and his acting at the end of the video is absolutely worth a chuckle. Given Halloween is around the corner, why not build five to eight of these, and hide them in your roommate’s bedroom?

Video after the break.
Continue reading “Angry Robot Face Is Less Than Friendly”

A Turing-Complete CPU In Sunvox? Why Not!

Day-time software engineer and part-time musician, [Logickin,] knows a thing or two about programming the SunVox modular synthesiser and tracker software. Whilst the software is normally used for creating music and sound effects, they decided to really push it, and create the VOXCOM-1610, a functional turing-complete CPU inside SunVox, just for fun.

For those who haven’t come across SunVox before now, this software is a highly programmable visual environment for building up custom synthesisers, piecing signals together to create rhythms — that’s the ‘tracker’ bit — as well as interfacing to input devices such as MIDI and many others. It does look like a lot of fun, but just like CPUs created in Minecraft, just because, this seems to be the first time someone has built one inside this particular music app. The VOXCOM 1610 is a fully functional 10 Hz, 16-bit computer. It boasts 2KB of ROM, 256 bytes of RAM (expandable to 128 KB), and 8 general registers for data exchange between components. If you don’t fancy manually poking bits into the ROM to enter your software, then you’re in luck as [Logickin] has provided an assembler (in Java) that should ease the process a lot. The ABI will look very familiar to anyone who’s ever touched assembler before, although as you’d expect, it is quite light on addressing modes.

Now, all that is needed is for someone to port Doom to this and we’ll have it all. We think that is unlikely to happen. For those who pay attention, we did see one neat SunVox project in the past, which is certainly eye-catching as well as eardrum-bursting.

Thanks to [elbien] for the tip!

Why Nuclear Bombs Can’t Set The World On Fire

Before the first atomic bomb was detonated, there were some fears that a fission bomb could “ignite the atmosphere.” Yes, if you’ve just watched Oppenheimer, read about the Manhattan Project, or looked into atomic weapons at all, you’ll be familiar with the concept. Physicists determined the risk was “near zero,” proceeded ahead with the Trinity test, and the world lived to see another day.

You might be wondering what this all means. How could the very air around us be set aflame, and how did physicists figure out it wasn’t a problem? Let’s explore the common misunderstandings around this concept, and the physical reactions at play.

Continue reading “Why Nuclear Bombs Can’t Set The World On Fire”