3D Printing A Big LEGO Christmas Tree

LEGO make lots of neat floral arrangements these days, and even little Christmas trees, too. While they’re fun to build out of tiny little blocks, they’re a little small for use as your main Christmas tree. Sadly, a bigger version simply doesn’t exist in the LEGO catalog, so if that’s your desire, you’ll have to build your own—as [Ruth] and [Ellis] did!

The concept behind the build is as you’d expect. The duo effectively just 3D printed giant versions of LEGO pieces, with which they then assembled a large Christmas tree. It sounds very straightforward, but scaling an existing LEGO design up by six times tends to come with some complications. A tactical decision was made early on to ease proceedings—the original LEGO tree had a large brown base that would take lots of printing. This was eliminated in the hopes that it would speed the build significantly. The long plastic shafts that supported the original design were also replaced with steel shafts since printing them would have been incredibly difficult to do well.

The rest of the video demonstrates the huge amount of work that went into actually 3D printing and assembling this thing. It’s pretty great to watch, and you’ll learn a lot along the way.

We’ve seen other creators try similar projects, where they 3D print their own building blocks from scratch. It normally turns out much harder than expected! No surprise when you think about all the engineering that went into perfecting LEGO all those years ago.

Continue reading “3D Printing A Big LEGO Christmas Tree”

It’s Official: The North Pole Is Moving

Every scout knows how to read a compass, and that there is a magnetic north and a true north. That’s because the Earth’s magnetic field isn’t exactly aligned with the North Pole. Every five years, the US National Oceanic and Atmospheric Administration (NOAA) and the British Geological Survey (BGS) get together to decide if magnetic north is still the same as it was before. This time, it isn’t.

The update is to the WMM — the World Magnetic Model. Magnetic north has shifted away from Canada and towards Siberia, a trend that has been ongoing for the last 20 years.

Continue reading “It’s Official: The North Pole Is Moving”

pcb with santa sleigh racing circuit

Rudolph’s Sleigh On A North Pole PCB

Each Christmas, [Adam Anderson], [Daniel Quach], [Johan Wheeler], and [Gustav Abrahamsson] (going by ‘the Janky Jingle Crew’)—set themselves the challenge of outdoing their previous creations. Last year’s CH32 Fireplace brought an animated LED fire to life with CH32V003 microcontrollers.

This year, they’ve gone a step further with the North Pole Circuit, a holiday project that combines magnetic propulsion, festive decorations, and a bit of engineering flair. Inspired by a miniature speedway based on Friedrich Gauss’ findings, the North Pole Circuit includes sleighs and reindeer that glide along a custom PCB track, a glowing village with flickering lights, and a buzzer to play Christmas tunes.

The propulsion system works using the Lorentz force, where vertical magnets interact with PCB traces to produce motion. A two-phase design, similar to a stepper motor, ensures smooth operation, while guard rails maintain stability on curves. A separate CH32V003 handles lighting and synchronized jingles, creating a cohesive festive display. As we mentioned in the article on their last year’s creation, going from a one-off to a full batch will make one rethink the joy of repetitive production. Consider the recipients of these tiny Christmas cards quite the lucky ones. We deem this little gift a keeper to put on display when Christmas rolls around again.

This annual tradition highlights the Crew’s knack for combining fun and engineering. Curious about the details or feeling inspired to create your own? Explore the full details and files on their GitHub.

Making A Mechanical Watch From Scratch Is Fine Work

There are plenty of hard jobs out there, like founding your country’s nuclear program, or changing the timing chain on a BMW diesel. Making your own mechanical watch from scratch falls under that umbrella, too. And yet, [John Raffaelli] did just that, and prevailed!

That’s a lot of work.

Only a handful of components were purchased—[John] grabbed jewels, sapphire crystals, the strap, and the hairspring and mainspring off the shelf. Everything else, he made himself, using a fine touch, a sharp eye, and some deft work on his machine tools. If you’ve never worked at this scale before, it’s astounding to see—[John] steps through how he produced tiny pinions and balance wheels that exist at sub-fingertip scale. Even just assembling something this tiny would be a challenge, but [John] was able to craft it all from scratch and put it together into a functioning timepiece when he was done.

The final piece doesn’t just look great—we’re told it keeps good time as well. People like [John] don’t come along every day, though we do have one similar story in our deep archives from well over a decade ago. If you’re cooking up your own bespoke time pieces in your home workshop, don’t hesitate to drop your story on the tipsline!

Building A Diet Coke Button

[mars91] had an interesting problem to solve—his girlfriend often requested Diet Coke, but yelling for one across the apartment was frustrating and impractical. A dedicated Diet Coke button seemed like the perfect solution, so that’s precisely what he built.

The Diet Coke Button is a relatively simple device. A small silver push-button activates an Adafruit Feather M0 to send out a signal via its RFM95 LoRa radio. That signal is picked up by the receiver device, which runs on an ESP32. It’s got an RFM95 LoRa module, which receives signals from the button and sounds an alarm to indicate the request for a Diet Coke. The ESP32 also hosts a basic website which allows Diet Coke requests to be submitted via the web, as well as general submissions of a textual nature. The latter are displayed on a small OLED display. If you’re feeling bold, you can even set up the ESP32 to be accessible from the outside Internet, with [mars91] explaining how to do so using a Cloudflare tunnel for your own protection.

The only problem is that delivering the Diet Coke is still something you have to do by hand. Perhaps a future upgrade would involve some kind of small apartment-spanning railway for the delivery of ice-cold cans to designated stations.

It’s a unique project, and one that recalls us of an interesting talk about a different type of call button.

Continue reading “Building A Diet Coke Button”

Hackaday Podcast Episode 301: Hacking NVMe Into Raspberry Pi, Lighting LEDs With Microwaves, And How To Keep Your Fingers

Twas the week before Christmas when Elliot and Dan sat down to unwrap a pre-holiday bundle of hacks. We kicked things off in a seasonally appropriate way with a PCB Christmas card that harvests power from your microwave or WiFi router, plus has the potential to be a spy tool. We learned how to grow big, beautiful crystals quickly, just in case you need some baubles for the tree or a nice pair of earrings. Speaking of last-minute gifts, perhaps you could build a packable dipole antenna, a very durable PCB motor, or a ridiculously bright Fibonacci simple add-on for your latest conference badge. We also looked into taking a shortcut to homebrew semiconductors via scanning electron microscopes, solved the mystery of early CD caddies, and discussed the sad state of table saw safety and the lamentable loss of fingers, or fractions thereof.

 

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 301: Hacking NVMe Into Raspberry Pi, Lighting LEDs With Microwaves, And How To Keep Your Fingers”

Embossing Leather With A Pipe Bender And 3D Printed Tooling

Embossed leather belts can be deliciously stylish. However, the tooling for making these fashionable items is not always easy to come by, and it rarely comes cheap. What do we do when a tool is expensive and obscure? We 3D print our own, as [Myth Impressions] demonstrates.

The build is based around a Harbor Freight pipe bender. However, instead of the usual metal tooling, it’s been refitted with a printed embossing ring specifically designed for imprinting leather. The tool features raised ridges in an attractive pattern, and the pipe bender merely serves as a straightforward device for rolling the plastic tooling over a leather belt blank. Once cranked through the machine, the leather belt comes out embossed with a beautiful design.

It’s a neat project, and the 3D printed tooling works surprisingly well. The key is that leather is relatively soft, so it’s possible to use plastic tools quite effectively. With that said, you can even form steel with printed tooling if you use the right techniques.

We’ve seen some other neat leatherworking hacks before, like this nicely-modified Singer sewing machine.

Continue reading “Embossing Leather With A Pipe Bender And 3D Printed Tooling”