Multiplication on a common microcontroller is easy. But division is much more difficult. Even with hardware assistance, a 32-bit division on a modern 64-bit x86 CPU can run between 9 and 15 cycles. Doing array processing with SIMD (single instruction multiple data) instructions like AVX or NEON often don’t offer division at all (although the RISC-V vector extensions do). However, many processors support floating point division. Does it make sense to use floating point division to replace simpler division? According to [Wojciech Mula] in a recent post, the answer is yes.
The plan is simple: cast the 8-bit numbers into 32-bit integers and then to floating point numbers. These can be divided in bulk via the SIMD instructions and then converted in reverse to the 8-bit result. You can find several code examples on GitHub.
Continue reading “Faster Integer Division With Floating Point”