battery powered wall mounted clock with LCD display and 10 capacitive touch buttons

A Peppy Low Power Wall Mounted Display

[Phambili Tech] creates a battery powered mountable display, called “the Newt”, that can be used to display information about the time, calendar, weather or a host of other customizable items.

The Newt tries to strike a balance between providing long operating periods while still maintaining high refresh rates and having extensive features. Many of the battery powered devices of this sort use E-Ink displays which offer long operating windows but poor refresh rates. The Newt uses an LCD screen that, while not being as low power as an E-Ink display, offers extended battery operation while still being daylight readable and providing high refresh rates.

The display itself is a 2.7 inch 240×400 SHARP “Memory In Pixel” LCD that provides the peppy display at low power. The Newt is WiFi capable through its ESP32-S2-WROVER module with a RV-3028-C7 Real Time Clock, a buzzer for sound feedback and capacitive touch sensors for input and interaction. A 1.85Wh LiPo battery (3.7V, 500mAh) is claimed to last for 1-2 months, with the possibility of using a larger battery for longer life.

Continue reading “A Peppy Low Power Wall Mounted Display”

Shot of CubeTouch, a six sided cube built out of PCBs with each of the top PCB allowing for diffusion of the LEDs on the inside to shine through

Keyboard Shortcuts At The Touch Of A Planetary Cube

[Noteolvides] creates the CubeTouch, a cube made of six PCBs soldered together that creates a functional and interactive piece of art through its inlaid LEDs and capacitive touch sensors.

The device itself is connected through a USB-C connector that powers the device and allows it to send custom keyboard shortcuts, depending on which face is touched.

Finger touching the top of a CubeTouch device

The CubeTouch is illuminated on the inside with six WS2812 LEDs that take advantage of the diffusion properties of the underlying FR4 material to shine through the PCBs. The central microprocessor is a CH552 that has native USB support and is Arduino compatible. Each “planet” on the the five outward facing sides acts as a capacitive touch sensor that can be programmed to produce a custom key combination.

Assembling the device involves soldering the connections at two joints for each edge connecting the faces.

We’re no strangers to building enclosures from FR4, nor are we strangers to merging art and functionality. The CubeTouch offers a further exploration of these ideas in a sweet package.

The CubeTouch is Open Source Hardware Certified with all documentation, source code and other relevant digital artifacts available under a libre/free license.

Continue reading “Keyboard Shortcuts At The Touch Of A Planetary Cube”

TickTag, a tiny GPS logger with 3d printed case, LiPo battery and a 1 Euro coin for size reference

Tiny GPS Logger For The Internet Of Animals

[Trichl] has created a tiny GPS logger, called ‘TickTag’, designed as an inexpensive location tracking option for animal studies. The low cost, tiny form factor, and large power density of the LiPo battery give it the ability to track large populations of small animals, including dogs and bats.

The TickTag is capable of getting 10,000 GPS fixes from its 30 mAh cell. Each unit is equipped with an L70B-M39 GPS module controlled by an Atmel ATtiny1626 microcontroller and sports a tiny AXE610124 10-pin connection header for programming and communication. GPS data is stored on a 128 kB EEPROM chip with each GPS location fix using 25 bits for latitude, 26 bits for longitude, and 29 bits for a timestamp. Add it all up and you get 10 bytes per GPS data point (25+26+29=80), giving the 10k GPS fix upper bound.

To record higher quality data and extend battery life, the TickTag can be programmed to record GPS location data using variable frequency intervals or when geofencing bounds have been crossed.

Continue reading “Tiny GPS Logger For The Internet Of Animals”

Glue-on nails with vinyl record pickups pierced through them that are used on a vinyl record

The Sound Of Nails On Black Vinyl Records

[Victoria Shen] modifies glue-on nails to give her the ability to play vinyl records with her fingers. Details are light but from the many glamour pictures, it looks like she pushes record player needles through glue-on nails with thin pickup wire that then presumably goes to an audio jack for amplification.

Photograph of hand with record needs through glue-on nails

[Victoria] experiments with novel musical tools for use in her art and performances. Be sure to check out the videos of the nails in action. The combination of “scratching” and ability to alter the speed of vinyl with the free fingers creates a weird and eerie experience.

Using her “Needle Nails”, [Victoria] has found she’s able to play multiple records simultaneously (Nitter). Thanks to the different diameters of 33, 78 and 45 vinyls, she’s able to stack them up while still keeping her fingers on them.

Glove like musical instruments are nothing new but the novel use of fashion, glamour and technology allow [Victoria Shen] the freedom to create something uniquely weird and cool, so much so that Beyonce used it in a video shoot for Vogue (Nitter).

Continue reading “The Sound Of Nails On Black Vinyl Records”

Web Controlled Servo From A BeagleBone Black

bbb_servo

[Babak] created an in-depth tutorial on how he got his BeagleBone Black to control a servo from a web browser.

[Babak] configured a pin on his BeagleBone Black (BBB) as a PWM line and connected it to the control line on a micro hobby servo. The BBB is running a Node.js web server that displays a simple web page to control the servo. The browser sends a WebSocket request to a small WebSocket node server also running on the BBB that then writes the appropriate PWM value to the pin connected to the servo.

The code for node WebSocket server and web server can be found on his GitHub page. There is also a small node library to control PWM lines on the BBB. Though the end result is simple, controlling the servo can be done from any browser that can make a network connection to the BeagleBone Black. Check out the video after the jump for a description and demonstration.

Continue reading “Web Controlled Servo From A BeagleBone Black”

Using An NRF24L01 For Air Bootloading

nrfboot_small

[Necromant] wrote a library to flash his microcontroller over an RF link using an NRF24L01 wireless communication module. The NRF24L01 is a cheap RF module that can be easily integrated into many microcontroller projects. Though there are Arduino libraries for driving the NRF24L01, [Necromat] decided to make a port of one with no Arduino dependencies.

The resulting bootloader fits into 4K of RAM flash with packet loss and recovery along with user-configurable hardware or software SPI. Programming speeds are not the highest, but [NecromatNecromant] believes this to be a property of the VUSB rather than the transfer rate from the NRF24L01 or the target microcontroller.

To program the target AVR chip, [NecromatNecromant] used another NRF24L01 module connected to his uISP dongle over USB.  Using a custom tool to interface with the uISP, the target board can be programmed in a similar fashion as avrdude. Check out the code for the ISP dongle and the AVR bootloader on his GitHub page.

Public Transportation Display

display_cropped

[Adrian] and [Obelix] wanted to have an easy way to know when to expect the public transportation, so they hacked an LED dot matrix display to show arrival times for stops near their dorm.

They found the display on Ebay with a defective controller which they replaced with an ATmega328p. They connected the display to the internet by adding a small TP-Link MR3020 router and connecting it to the ATmega328p via a serial line. Their local transportation office’s web page is polled to gather wait times for the stops of interest. All rendering of the final image to display to the dot matrix display is done on their PC, which then gets pushed through to the MR3020, which in turn pushes it out to the ATmega328p for final display.

[Adrian] and [Obelix] warn about setting proper watchdog timers on the display driver to make sure bugs in the controller don’t fry the dot matrix elements. Their ATmega328p dot matrix driver code can be found on [Adrian]’s GitHub page.

Check out a video of the display in action after the jump.

Continue reading “Public Transportation Display”