Share Your Projects: Take Pictures

Information is diesel for a hacker’s engine, and it’s fascinating how much can happen when you share what you’re working on. It could be a pretty simple journey – say, you record a video showing you fixing your broken headphones, highlighting a particular trick that works well for you. Someone will see it as an entire collection of information – “if my headphones are broken, the process of fixing them looks like this, and these are the tools I might need”. For a newcomer, you might be leading them to an eye-opening discovery – “if my headphones are broken, it is possible to fix them”.

There’s a few hundred different ways that different hackers use for project information sharing – and my bet is that talking through them will help everyone involved share better and easier. Let’s start talking about pictures – perhaps, the most powerful tool in a hacker’s arsenal. I’ll tell you about all the picture-taking hacks and guidelines I’ve found, go into subjects like picture habits and simple tricks, and even tell you what makes Hackaday writers swoon!

To start with, here’s a picture of someone hotwiring a car. This one picture conveys an entire story, and a strong one.

Continue reading “Share Your Projects: Take Pictures”

One of the PCB projects involved being held in the author's hands - a large-ish green board, with two Pi Picos visible on it

RP2040 And 5V Logic – Best Friends? This FX9000P Confirms!

Over the years, we’ve seen some modern microcontrollers turn out to be 5V-tolerant – now, RP2040 joins the crowd. Half a year ago, when we covered an ISA card based on a Pi Pico, [Eben Upton] left a comment saying that RP2040 is, technically, 5V tolerant for GPIO input purposes. The datasheets don’t state this because the reality of 5V tolerance isn’t the same as for natively 5V-tolerant chips – for instance, it doesn’t extend all the way to 5.5V for it to be ‘legally’ 5V-tolerant, as in, what 5V tolerance typically means when mentioned in a datasheet.

Having read that comment, [Andrew Menadue] has set out to test-drive the RP2040 GPIO capabilities, in a perfectly suited real-world scenario. He’s working with retro tech like Z80-era computers, using RP2040 boards for substituting entire RAM and ROM chips that have died in his FX9000P. Not only do the RP2040-driven replacements work wonders, using RP2040 boards also turns out to be way cheaper than sourcing replacements for chips long out of production!

Previously, [Andrew] used level shifter chips for interfacing the RP2040 with 5V systems, but he’s rebuilt a few designs of his without level shifters for the sake of this experiment. Now, he reports that, so far, those boards have been running long-term without problems. Together with [Eben]’s comment, this instills confidence in us when it comes to our RP2040 forays and 5V inputs.

There are a number of important caveats to this, that you should read up on. Some major points – certain GPIOs (like ADC ones) can’t take it, the GPIOs aren’t 5V-tolerant when set to output, and you shouldn’t feed the GPIOs 5V when the RP2040’s VDDIO is not powered up. [Andrew] points out one such case himself – one board of his has shed all level shifters except for the 8-bit address bus, which is driven by either the CPU or the RP2040 at different times, and that would result in 5V on an output-set GPIO when contention happens. All in all, if you’re working with 5V logic and your application is more hacking than business-critical stuff, you can shed the level shifters, too.

Continue reading “RP2040 And 5V Logic – Best Friends? This FX9000P Confirms!”

A Xiaomi 3 Lite dashboard with the panel taken off and the PCB visible, four wires connected to the SWD header.

Xiaomi Scooter Firmware Hacking Gets Hands-On

Scooter hacking is wonderful – you get to create a better scooter from a pre-made scooter platform, and sometimes you can do that purely through firmware modifications. Typically, hackers have been uploading firmware using Bluetooth OTA methods, and at some point, we’ve seen the always-popular Xiaomi scooters starting to get locked down. Today, we see [Daljeet Nandha] from [RoboCoffee] continue the research of the new Xiaomi scooter realities, where he finds that SWD flashing is way more of a viable avenue that we might’ve expected. Continue reading “Xiaomi Scooter Firmware Hacking Gets Hands-On”

Picture of the PCB with the text inside the copper pads

Silkscreen Busy? Put Labels Inside Pads

When making a PCB informative and self-documenting, there’s often just not enough space to silkscreen all the labels you want, and slowly but surely, you collect a set of tricks: using different through-hole pad shapes to denote ground or power pins, standardized pinouts for connectors, your own signal name shortening notations, and so on.

What if you have some large-ish signal pads on your board, and having the signal names on silkscreen just isn’t good enough? In this case, here’s a new trick for your toolkit: [Christoph] from [MakerProbe] shows us how he puts text directly inside the copper pads.

What you need is a set of Gerber files and a Python script. Technically, this ought to work with any PCB EDA, with [Christoph] using KiCad. You need to put the to-be-subtracted signal names on their very own layer, export Gerber files without features like aperture macros, then run the script. You’ll get a new copper layer as a result, it’s that simple. We also get a set of tips on what kinds of pads suit best and how to prepare them — and fancy-looking real-life examples. You get higher resolution than for on-silkscreen text, solderability isn’t impacted, and the labels are even visible after desoldering wires from the pads. What’s not to like?

Over on Twitter, [Makerprobe] have been doing things like 0201 tombstoning and BGA yield research – we say they’re worth a follow if you’d like to see someone pushing PCB boundaries! Innovative PCB design methods and tricks have a special spot in our hearts, what’s with things like this Tux-emblazoned desktop motherboard that’s also a guide on PCB aesthetics, and there’s a whole lot more you can do to make your PCBs pretty while preserving and even improving functionality. From turning rigid PCBs flexible to hiding components inside a PCB stack, there’s plenty of opportunities that we are yet to extract out of PCB world, and it’s lovely to see one more technique we can make use of.

Continue reading “Silkscreen Busy? Put Labels Inside Pads”

Screenshot of the demonstration video that shows the desktop being unlocked with face recognition, with a camera feed and a terminal showing how the software works.

Open-Source FaceID With RealSense

RealSense cameras have been a fascinating piece of tech from Intel — we’ve seen a number of cool applications in the hacker world, from robots to smart appliances. Unfortunately Intel did discontinue parts of the RealSense lineup at one point, specifically the LiDAR and face tracking-tailored models. Apparently, these haven’t been popular, and we haven’t seen these in hacks either. Until now, that is. [Lina] brings us a real-world application for the RealSense face tracking cameras, a FaceID application for Linux.

The project is as simple as it sounds: if the camera’s built-in face recognition module recognizes you, your lockscreen is unlocked. With the target being Linux, it has to tie into the Pluggable Authentication Modules (PAM) subsystem for authentication, and of course, there’s a PAM module for RealSense to go with it, aptly named pam_sauron. This module is written in Zig, a modern C-like language, so it’s both a good example of how to create your own PAM integrations, and a path towards doing that in a different language for once. As usual, there’s TODOs, like improving the UX and taking advantage of some security features RealSense cameras have, but it’s nevertheless a fun and self-sufficient application for one of the F4XX-series RealSense cameras in case you happen to own one.

Ever since the introduction of RealSense we’ve seen these cameras used in robotics and 3D scanning, thanks at least in part due to their ability to be used in Linux. Thankfully, Intel only discontinued the less popular RealSense cameras, which didn’t affect the main RealSense lineup, and the hacker-beloved depth cameras are still available for all of our projects. Wondering about the tech behind it? Here’s a teardown of a RealSense camera module intended for laptop use.

Picture of the PCIce card with a fan attached

Server Network Cards Made Extra Cool

Using cheap and powerful server expansion cards in your desktop builds is a tempting option for many hackers. Of course, they don’t always fit mechanically or work perfectly; for instance, some server-purpose cards are designed for intense amounts of cooling that servers come with, and will overheat inside a relatively calm desktop case. Having encountered such a network card, [Chris] has developed and brought us the PCIce – a PCIe card that’s a holder and a controller for a 80mm fan.

The card gets fan 12V from the PCIe slot, and there’s an ATTiny to control the fan’s speed, letting you cycle through speeds with a single button press and displaying the current speed through LEDs. There’s a great amount of polish put into this card – from making it mechanically feature-complete with all the fancy fasteners, to longevity-oriented firmware that even makes sure to notice if the EEPROM-stored settings ever get corrupted. At the moment, the schematics and the ATTiny firmware are open-source, [Chris] has promised to publish hardware files after polishing them, and has also manufactured a batch of PCIce cards for sale.

When it comes to making use of cheap server-purpose cards, a cooling solution is good to see – we’ve generally seen adapters from proprietary form-factors, like this FlexLOM adapter from [TobleMiner] to make use of cheap high-throughput network cards with slightly differing mechanical dimensions and pinouts. Every batch of decommissioned server cards has some potential with only a slight hitch or two, and it’s reassuring to see hackers make their eBay finds really work for them.

Photo of the Echo Dot PCB, highlighting the capacitor that needs to be shorted out for the exploit to work

Squeezing Secrets Out Of An Amazon Echo Dot

As we have seen time and time again, not every device stores our sensitive data in a respectful manner. Some of them send our personal data out to third parties, even! Today’s case is not a mythical one, however — it’s a jellybean Amazon Echo Dot, and [Daniel B] shows how to make it spill your WiFi secrets with a bit of a hardware nudge.

There’s been exploits for Amazon devices with the same CPU, so to save time, [Daniel] started by porting an old Amazon Fire exploit to the Echo Dot. This exploit requires tactically applying a piece of tin foil to a capacitor on the flash chip power rail, and it forces the Echo to surrender the contents of its entire filesystem, ripe for analysis. Immediately, [Daniel] found out that the Echo keeps your WiFi passwords in plain text, as well as API keys to some of the Amazon-tied services.

Found an old Echo Dot at a garage sale or on eBay? There might just be a WiFi password and a few API keys ripe for the taking, and who knows what other kinds of data it might hold. From Amazon service authentication keys to voice recognition models and maybe even voice recordings, it sounds like getting an Echo to spill your secrets isn’t all that hard.

We’ve seen an Echo hijacked into an always-on microphone before, also through physical access in the same vein, so perhaps we all should take care to keep our Echoes in a secure spot. Luckily, adding a hardware mute switch to Amazon’s popular surveillance device isn’t all that hard. Though that won’t keep your burned out smart bulbs from leaking your WiFi credentials.