Kotonki: Agricultural Vehicle Built For Customization

Agriculture on any scale involves many tasks that require lifting, hauling, pushing, and pulling. On many modern farms, these tasks are often done using an array of specialized (and expensive) equipment. This puts many small-scale farmers, especially those in developing countries, under significant financial pressure. These challenges led a South African engineering firm to develop the Kotonki, a low-cost hydraulically powered utility vehicle that can be customized for a wide variety of use cases. Video after the break.

The name Kotonki is derived from the Setswana phrase for a donkey kart. It is in essence a self-propelled hydraulic power pack, capable of hauling 1 ton of anything that can fit on its load bed. It comes in front-wheel drive or four-wheel drive versions, with each wheel individually driven by a hydraulic motor. The simple welded steel frame articulates around a double pivot, which allows it to keep all 4 wheels on the ground over any terrain. At a max speed of 10 km/h it won’t win any races, but neither would most other agricultural vehicles. The Kotonki is built mostly using off-the-shelf components and is powered by a common 12HP Honda engine. In the world of DRM agricultural equipment, this makes for simple repairs, low running costs, and easy customization for the task at hand. This can include mounting log splitters, water pumps, lifting beds, or anything else that can be driven by its hydraulic and rotary PTOs (Power Take-Off).

Continue reading “Kotonki: Agricultural Vehicle Built For Customization”

Full Printing Path Control Without Writing GCode

User-friendly slicing software is arguably the key software component that makes 3D printing approachable for most users. Without it going from a CAD design to a printing part would take hours, not seconds. As a trade-off you give up a lot of control over the exact path of the hotend, but most of the time it’s worth it. However, for some niche use-cases, having complete control over the tool path is necessary. Enter FullControl GCode Designer, a tool that gives you all the control without resorting to writing GCode directly.

FullControl takes an approach similar to OpenSCAD, where you define path geometries line by line. Need an array of circles? Choose the circle feature, define its origin, radius, starting position, and extrusion height, and define the spacing and axes (including Z) of the copies. Need a mathematically defined lamp shade? Define the functions, and FullControl generates the GCode. Non-planar printing, where your print head moves along all three axes simultaneously instead of staying at a constant Z-height is also possible. In the video after the break, [Thomas Sanladerer] demonstrates how he used FullControl to reduce the print time of a functionally identical part from two hours to 30 minutes.

FullControl is built on Microsoft Excel using Visual Basic scripting, which comes at the cost of long GCode generation times. It also doesn’t show the defined tool paths graphically, so the generated code needs to be pasted into a viewer like Repetier Host to see what it’s doing. Fortunately, a Python version is coming to should hopefully elevate many of these shortcomings.

We also featured some other GCode hacks in the last few months that bend existing GCode along a spline path, and a Blender plugin allows the surface textures of sliced objects to be modified.

Continue reading “Full Printing Path Control Without Writing GCode”

DIY Super-Bright Outdoor TV With Watercooling

Watching TV or playing a console game is usually not an outdoor activity, helped by the fact that you can’t see anything on your average TV in direct sunlight. However, with some basic fabrication skills, [Matt] from [DIY Perks] demonstrates how to upgrade an LCD TV to be viewable in the brightest conditions by upgrading its backlight, and adding a simple water-cooling system in the process. Full build video after the break.

An LCD panel doesn’t produce any light but acts as a filter for the backlight behind it, which is just a widely spaced array of white LEDs. The core of the build is upgrading the backlight, so [Matt] picked up a large 4K TV with a partially faulty backlight for a very affordable price. The new backlight consists of a set of high-brightness LED panels, screwed to a sheet of aluminum. The LEDs generate a lot of heat, so [Matt] cools the back of the aluminum sheet with a budget-friendly water cooling system built from a car radiator, small water pump, and some clear plastic tubing. Everything is housed in an industrial-looking enclosure made from aluminum sheet, aluminum extrusions, and an acrylic back panel. To protect the LCD panel, it’s glued to a sheet of tempered glass from an old coffee table.

The final product performs very well, even in direct sunlight, and is also weatherproof. [DIY Perks] is known for projects that work as well as they look, like his triple-screen luggable PC or massive bellow-cooled PC. Continue reading “DIY Super-Bright Outdoor TV With Watercooling”

Turn A Parking Sensor Into An Anemometer

To measure wind speed and direction, most people turn the traditional cup anemometer and wind vane. Another less-known method is to use an array of ultrasonic transducers, which doesn’t need any moving parts. [Andy] demonstrates building an ultrasonic anemometer using a cheap after-market parking distance sensor kit and an Arduino. Demo video after the break.

Aside from the price, these kits have the added advantage of including waterproof ultrasonic transducers, perfect for an outdoor weather station, and all the required circuitry to drive them. Some circuit surgery is required to remove the existing 8-pin microcontroller and wire in an Arduino Pro Micro and a few passives to take control of the pulse outputs and processing of the received signal to calculate direction and velocity. The ultrasonic transducers are mounted in a circular baseplate pointing up to an “echo plate” mounted on a carbon fiber rod. [Andy]’s latest version also added an ESP8266 Wi-Fi module for connectivity.

One of the challenges of DIY environmental sensors is calibrating them to output reliable absolute values, and this is especially the case for wind speed. You need another anemometer that is known to be accurate or a wind source of a known velocity. A while back we covered [Jianjia Ma]’s ultrasonic anemometer build, where he mounted it on top of his car and went for his drive, but still couldn’t quite get consistent results.

While the lack of moving parts are nice, ultrasonic anemometers are significantly more complex on the software and electronics side, and a DIY cup and vane anemometer is still a viable alternative.

Continue reading “Turn A Parking Sensor Into An Anemometer”

G10 Is The 3D Print Surface You Crave

Print surfaces have been a major part of 3D printer development and experimentation since the beginning. [Makers Muse] has been experimenting with G10, a cheap high-pressure fiberglass laminate, and found that it’s an excellent candidate for most of your FDM printing needs. (Video embedded after the break.)

You’re probably more familiar with the fire-resistant version of G10, FR-4, the fiberglass substrate used for most PCBs. It’s also known by the brand name Garolite. [Makers Muse] tested with PLA, PETG (on his headphone build), ABS, ASA, PET, PCTG, and nylon. All the materials displayed excellent bed adhesion when heated to the appropriate temperature, and would often self-release the part as it cooled down. For TPU, the bed was left unheated to prevent it from sticking too well. 0.5 mm, 1.5 mm, and 3 mm G10 sheet thicknesses were tested, and [Makers Muse] found 1.5 mm to be the perfect balance between rigidity, and flexibility for removing particularly sticky prints.

G10 has been used in some commercial 3D printers, but there is very little information regarding its use beyond high-temperature materials like nylon. It leaves an excellent surface finish on the bottom of parts, as long as you take care not to scratch the bed. Compared to glass, its lower weight is advantageous for printers where the bed moves for the Y-axis. Another major advantage is the low cost, especially compared to some of the more exotic bed materials.

The results certainly look very promising, and we are keen to get our hands on some G10 for our own printers. If you have trouble finding it for sale, check out your local knife-making suppliers, who sell it as handle materials.

Continue reading “G10 Is The 3D Print Surface You Crave”

Tiny Winged Circuits Fall With Style

Researchers at Northwestern University is moving the goalposts on how small you can make a tiny flying object down to 0.5 mm, effectively creating flying microchips. Although “falling with style” is probably a more accurate description.

A larger "IoT Macroflyer" with more conventional cicruitry
A larger “IoT Macroflyer” with more conventional circuitry

Like similar projects we featured before from the Singapore University of Technology and Design, these tiny gliders are inspired by the “helicopter seeds” produced by various tree species. They consist of a single shape memory polymer substrate, with circuitry consisting of silicon nanomembrane transistors and chromium/gold interconnects transferred onto it.

Looking at the research paper, it appears that the focus at this stage was mainly on the aerodynamics and manufacturing process, rather than creating functional circuitry. A larger “IoT Macroflyer” did include normal ICs, which charges a super capacitor from a set of photodiodes operating in the UV-A spectrum, which acts as a cumulative dosimeter. The results of which can be read via NFC after recovery.

As with other similar projects, the proposed use-cases include environmental monitoring and surveillance. Air-dropping a large quantity of these devices over the landscape would constitute a rather serious act of pollution, for which case the researchers have also created a biodegradable version. Although we regard these “airdropped sensor swarms” with a healthy amount of skepticism and trepidation, we suspect that they will probably be used at some point in the future. We just hope that those responsible would have considered all the possible consequences.

Autonomous Ground Effect Vehicle Demonstrator Aims To Speed Up Maritime Shipping

Ground effect vehicles, or ekranoplans, have the advantage of being more efficient than normal aircraft and faster than boats, but so far haven’t been developed beyond experimental prototypes. Fortunately, this doesn’t stop companies from trying, which has led to a collaboration between [ThinkFlight] and [rctestflight] to create a small-scale demonstrator for the Flying Ship Company.

The Flying Ship Company wants to use unmanned electric ekranoplans as high-speed marine cargo carriers that can use existing maritime infrastructure for loading and unloading. For the scale model, [rctestflight] was responsible for the electronics and software, while [ThinkFlight] built the airframe. As with his previous ekranoplan build, [ThinkFlight] designed it in XFLR5, cut the parts from foam using a CNC hot wire cutter (which we still want a better look at), and laminated it with Kevlar for strength. One of the challenges of ground effect vehicles is that the center of pressure will shift rearward as they leave a ground effect, causing them to pitch up. To maintain control when moving into and out of ground effect, these crafts often use a large horizontal stabilizer high up on the tail, out of ground effect.

A major feature of this demonstrator is automatic altitude control using a LIDAR sensor mounted on the bottom. This was developed by [rctestflight] using a simple foam board ekranoplan and [Think Flighs]’s previous airframe, with some custom code added to ArduPilot. It works very well on smooth, calm water, but waves introduce a lot of noise into the LIDAR data. It looks like they were able to overcome this challenge, and completed several successful test flights in calm and rough conditions.

The final product looks good, flies smoothly, and is easy to control since the pilot doesn’t need to worry about pitch or throttle control. It remains to be seen if The Flying Boat will overcome the challenges required to turn it into a successful commercial craft, and we will be following the project closely.

Continue reading “Autonomous Ground Effect Vehicle Demonstrator Aims To Speed Up Maritime Shipping”