Pocket-Sized Workstation Sports Pi Zero, Pop-Up Screen

Many of us could use a general-purpose portable workstation, something small enough to pocket but still be ready for a quick troubleshooting session. Terminal apps on a smartphone will usually do the job fine, but they lack the panache of this pocketable pop-top Raspberry Pi workstation.

It doesn’t appear that [Michael Horne] has a specific mission in mind for his tiny Linux machine, but that’s OK — we respect art for art’s sake. The star of the show is the case itself, a unit intended for dashboard use with a mobile DVD player or backup camera. The screen is a 4.3″ TFT with a relatively low-resolution, so [Michael] wasn’t expecting too much from it. And he faced some challenges, like dealing with the different voltage needs for the display and the Raspberry Pi Zero W he intended to stuff into the base. Luckily, the display regulates the 12-volt supply internally to 3.3-volts, so he just tapped into the 3.3-volt pin on the Pi and powered everything from a USB charger. The display also has some smarts built in, blanking until composite video is applied, which caused a bit of confusion at first. A few case mods to bring connectors out, a wireless keyboard, and he had a nice little machine for whatever.

No interest in a GUI machine? Need a text-only serial terminal? We’ve seen that before too. And here’s one with a nice slide-out keyboard built in.

Continue reading “Pocket-Sized Workstation Sports Pi Zero, Pop-Up Screen”

Practical Plasma for Thin-Film Deposition

[Nixie] wants to sputter. We know, who doesn’t? But [Nixie] has a specific purpose for his sputtering: thin-film deposition, presumably in support of awesome science. But getting to that point requires a set of tools that aren’t exactly off-the-shelf items, so he’s building out a DIY sputtering rig on the cheap.

If you’re not familiar with sputtering, that’s understandable. In this context, sputtering is a process that transfers particles from one solid to another by bombarding the first solid with some sort of energetic particles, usually electrons or a plasma. When properly controlled, sputtering has applications from mass spectrometry to the semiconductor industry, where it’s used to either deposit thin films on silicon wafers or etch them away selectively.

No matter the application, sputtering needs a stable stream of plasma. [Nixie] has posted a series of articles on his blog walking us through his plasma experiments, from pulling a really strong vacuum to building a high-voltage power supply from a microwave oven transformer. It’s a project that needs a deep well of skills and tools, like glassworking, machining, and high-voltage electronics. Check out the plasma in the video below.

Will [Nixie] be using this for a DIY fab lab? Will it be used to make homebrew LEDs? The world waits to hear.

Continue reading “Practical Plasma for Thin-Film Deposition”

Hacking When It Counts: Pigeon-Guided Missiles

The image of the crackpot inventor, disheveled, disorganized, and surrounded by the remains of his failures, is an enduring Hollywood trope. While a simple look around one’s shop will probably reveal how such stereotypes get started, the image is largely not a fair characterization of the creative mind and how it works, and does not properly respect those that struggle daily to push the state of the art into uncharted territory.

That said, there are plenty of wacky ideas that have come down the pike, most of which mercifully fade away before attracting undue attention. In times of war, though, the need for new and better ways to blow each other up tends to bring out the really nutty ideas and lower the barrier to revealing them publically, or at least to military officials.

Of all the zany plans that came from the fertile minds on each side of World War II, few seem as out there as a plan to use birds to pilot bombs to their targets. And yet such a plan was not only actively developed, it came from the fertile mind of one of the 20th century’s most brilliant psychologists, and very nearly resulted in a fieldable weapon that would let fly the birds of war.

Continue reading “Hacking When It Counts: Pigeon-Guided Missiles”

Micro Chainsaw Gets a Much Needed Nitro Power Boost

When life hands you the world’s smallest chainsaw, what’s there to do except make it even more ridiculous? That’s what [JohnnyQ90] did when he heavily modified a mini-electric chainsaw with a powerful RC car engine.

The saw in question, a Bosch EasyCut with “Nanoblade technology,” can only be defined as a chainsaw in the loosest of senses. It’s a cordless tool intended for light pruning and the like, and desperately in need of the [Tim the Toolman Taylor] treatment. The transmogrification began with a teardown of the drivetrain and addition of a custom centrifugal clutch for the 1.44-cc nitro RC car engine. The engine needed a custom base to mount it inside the case, and the original PCB made the perfect template. The original case lost a lot of weight to the bandsaw and Dremel, a cooling fan was 3D-printed, and a fascinatingly complex throttle linkage tied everything together. With a fuel tank hiding in the new 3D-printed handle, the whole thing looks like it was always supposed to have this engine. The third video below shows it in action; unfortunately, with the engine rotating the wrong direction and no room for an idler gear, [JohnnyQ90] had to settle for flipping the bar upside down to get it to cut. But with some hacks it’s the journey that interests us more than the destination.

This isn’t [JohnnyQ90]’s first nitro rodeo — he’s done nitro conversions on a cordless drill and a Dremel before. You should also check out his micro Tesla turbine, too, especially if you appreciate fine machining.

Continue reading “Micro Chainsaw Gets a Much Needed Nitro Power Boost”

Simple Mechanism Gives Support for SMT Assembly

With the fine work needed for surface-mount technology, most of the job entails overcoming the limits of the human body. Eyes more than a couple of decades old need help to see what’s going on, and fingers that are fine for manipulating relatively large objects need mechanical assistance to grasp tiny SMT components. But where it can really fall apart is when you get the shakes, those involuntary tiny muscle movements that we rarely notice in the real world, but wreak havoc as we try to place components on a PCB.

To fight the shakes, you can do one of two things: remove the human, or improve the human. Unable to justify a pick and place robot for the former, [Tom] opted to build a quick hand support for surface-mount work, and the results are impressive considering it’s built entirely of scrap. It’s just a three-piece arm with standard butt hinges for joints; mounted so the hinge pins are perpendicular to the work surface and fitted with a horizontal hand rest, it constrains movement to a plane above the PCB. A hole in the hand rest for a small vacuum tip allows [Tom] to pick up a part and place it on the board — he reports that the tackiness of the solder paste is enough to remove the SMD from the tip. The video below shows it in action with decent results, but we wonder if an acrylic hand rest might provide better visibility.

Not ready for your own pick and place? That’s understandable; not every shop needs that scale of production. But we think this is a great idea for making SMT approachable to a wider audience.

Continue reading “Simple Mechanism Gives Support for SMT Assembly”

Ask Hackaday: What’s in Your Digital Bugout Bag?

Your eyes pop open in the middle of the night, darting around the darkened bedroom as you wonder why you woke up. Had you heard something? Or was that a dream? The matter is settled with loud pounding on the front door. Heart racing as you see blue and red lights playing through the window, you open the door to see a grim-faced police officer standing there. “There’s been a hazardous materials accident on the highway,” he intones. “We need to completely evacuate this neighborhood. Gather what you need and be ready to leave in 15 minutes.”

Most people will live their entire lives without a scenario like this playing out, but such things happen all the time. Whether the disaster du jour is man-made or natural, the potential to need to leave in a big hurry is very real, and it pays to equip yourself to survive such an ordeal. The primary tool for this is the so-called “bugout bag,” a small backpack for each family member that contains the essentials — clothing, food, medications — to survive for 72 hours away from home.

A bugout bag can turn a forced evacuation from a personal emergency into a minor inconvenience, as those at greatest risk well know — looking at you, Tornado Alley. But in our connected world, perhaps it pays to consider updating the bugout bag to include the essentials of our online lives, those cyber-needs that we’d be hard-pressed to live without for very long. What would a digital bugout bag look like?

Continue reading “Ask Hackaday: What’s in Your Digital Bugout Bag?”

Orbital Mechanics on a Vintage Kaypro

These days, a good proxy for hacking prowess is getting Doom playable on the oldest piece of hardware imaginable. While we respect and applaud these efforts, perhaps the bar should be set a bit higher. Like orbital mechanics on an early 80s Kaypro, perhaps?

At least that’s the hurdle [Chris Fenton] set for himself as a fun project for his spare time with his Kaypro 2/84, a vintage Z80 clocking in at a screaming 4 MHz and 64-kB of RAM. With its built-in 80×25, 9″ green phosphor CRT monitor and flip-top keyboard, the Kaypro fit into that loveable luggable category of machines and predated IBM’s and Apple’s market dominance by a few years. The CP/M operating system has actually aged pretty well — but well enough to port [Chris]’ Deep Dish Nine, a graphical game written for the Arduboy that uses Kerbal-like orbital mechanics skills to deliver interplanetary pizzas? In the first instance, no — the game, ported to Turbo Pascal, only managed fractional frames per second, rendering it unplayable. But with some very clever coding, [Chris] was able to improve refresh rates 10-fold. The optimization road not taken includes hardware hacks, like overclocking the Z80 or even replacing it with an FPGA and emulator, but that’s hardly keeping with the spirit of the thing.

It’s always great to see vintage machines pushing the envelope. A great place to see them is one of the Vintage Computer Fairs, like the upcoming VCF Southeast in Georgia. We were at the one diagonally across the country a few weeks back, and they’re well worth the trip.