Restoring A Vintage CGA Card With Homebrew HASL

Right off the bat, we’ll stipulate that what [Adrian] is doing in the video below isn’t actual hot air solder leveling. But we thought the results of his card-edge connector restoration on a CGA video card from the early 80s was pretty slick, and worth keeping in mind for other applications.

The back story is that [Adrian], of “Digital Basement” YouTube fame, came across an original IBM video card from the early days of the IBM-PC. The card was unceremoniously dumped, probably due to the badly corroded pins on the card-edge bus connector. The damage appeared to be related to a leaking battery — the corrosion had that sickly look that seems to only come from the guts of batteries — leading him to try cleaning the formerly gold-plated pins. He chose naval jelly rust remover for the job; for those unfamiliar with this product, it’s mostly phosphoric acid mixed with thickeners and is used as a rust remover.

The naval jelly certainly did the trick, but left the gold-plated pins a little worse for the wear. Getting them back to their previous state wasn’t on the table, but protecting them with a thin layer of solder was easy enough. [Adrian] used liquid rosin flux and a generous layer of 60:40 solder, which was followed by removing the excess with desoldering braid. That worked great and got the pins on both sides of the board into good shape.

[Adrian] also mentioned a friend who recommended using toilet paper to wick up excess solder, but sadly he didn’t demonstrate that method. Sounds a little sketchy, but maybe we’ll give it a try. As for making this more HASL-like, maybe heating up the excess solder with an iron and blasting the excess off with some compressed air would be worth a try.

Continue reading “Restoring A Vintage CGA Card With Homebrew HASL”

Scrapping The Local Loop, By The Numbers

A few years back I wrote an “Ask Hackaday” article inviting speculation on the future of the physical plant of landline telephone companies. It started innocently enough; an open telco cabinet spotted during my morning walk gave me a glimpse into the complexity of the network buried beneath my feet and strung along poles around town. That in turn begged the question of what to do with all that wire, now that wireless communications have made landline phones so déclassé.

At the time, I had a sneaking suspicion that I knew what the answer would be, but I spent a good bit of virtual ink trying to convince myself that there was still some constructive purpose for the network. After all, hundreds of thousands of technicians and engineers spent lifetimes building, maintaining, and improving these networks; surely there must be a way to repurpose all that infrastructure in a way that pays at least a bit of homage to them. The idea of just ripping out all that wire and scrapping it seemed unpalatable.

With the decreasing need for copper voice and data networks and the increasing demand for infrastructure to power everything from AI data centers to decarbonized transportation, the economic forces arrayed against these carefully constructed networks seem irresistible. But what do the numbers actually look like? Are these artificial copper mines as rich as they appear? Or is the idea of pulling all that copper out of the ground and off the poles and retasking it just a pipe dream?

Continue reading “Scrapping The Local Loop, By The Numbers”

AI Kayak Controller Lets The Paddle Show The Way

Controlling an e-bike is pretty straightforward. If you want to just let it rip, it’s a no-brainer — or rather, a one-thumber, as a thumb throttle is the way to go. Or, if you’re still looking for a bit of the experience of riding a bike, sensing when the pedals are turning and giving the rider a boost with the motor is a good option.

But what if your e-conveyance is more of the aquatic variety? That’s an interface design problem of a different color, as [Braden Sunwold] has discovered with his DIY e-kayak. We’ve detailed his work on this already, but for a short recap, his goal is to create an electric assist for his inflatable kayak, to give you a boost when you need it without taking away from the experience of kayaking. To that end, he used the motor and propeller from a hydrofoil to provide the needed thrust, while puzzling through the problem of building an unobtrusive yet flexible controller for the motor.

His answer is to mount an inertial measurement unit (IMU) in a waterproof container that can clamp to the kayak paddle. The controller is battery-powered and uses an nRF link to talk to a Raspberry Pi in the kayak’s waterproof electronics box. The sensor also has an LED ring light to provide feedback to the pilot. The controller is set up to support both a manual mode, which just turns on the motor and turns the kayak into a (low) power boat, and an automatic mode, which detects when the pilot is paddling and provides a little thrust in the desired direction of travel.

The video below shows the non-trivial amount of effort [Braden] and his project partner [Jordan] put into making the waterproof enclosure for the controller. The clamp is particularly interesting, especially since it has to keep the sensor properly oriented on the paddle. [Braden] is working on a machine-learning method to analyze paddle motions to discern what the pilot is doing and where the kayak goes. Once he has that model built, it should be time to hit the water and see what this thing can do. We’re eager to see the results.
Continue reading “AI Kayak Controller Lets The Paddle Show The Way”

Hackaday Links Column Banner

Hackaday Links: June 9, 2024

We’ve been harping a lot lately about the effort by carmakers to kill off AM radio, ostensibly because making EVs that don’t emit enough electromagnetic interference to swamp broadcast signals is a practical impossibility. In the US, push-back from lawmakers — no doubt spurred by radio industry lobbyists — has put the brakes on the move a bit, on the understandable grounds that an entire emergency communication system largely centered around AM radio has been in place for the last seven decades or so. Not so in Japan, though, as thirteen of the nation’s 47 broadcasters have voluntarily shut down their AM transmitters in what’s billed as an “impact study” by the Ministry of Internal Affairs and Communications. The request for the study actually came from the broadcasters, with one being quoted in a hearing on the matter as “hop[ing] that AM broadcasting will be promptly discontinued.” So the writing is apparently on the wall for AM radio in Japan.

Continue reading “Hackaday Links: June 9, 2024”

Screwless Eyeballs Are A Lesson In Design-For-Assembly

[Will Cogley] makes eyeballs; hey, everyone needs a hobby, and we don’t judge. Like all his animatronics, his eyeballs are wondrous mechanisms, but they do tend toward being a bit complex, especially in terms of the fasteners needed to assemble them.

But not anymore. [Will] redid his eyeball design to be as easy to assemble as possible, and the results are both impressive and instructive. His original design mimics real eyeballs quite well, but takes six servos and a large handful of screws and nuts, which serve both to attach the servos to the frame and act as pivots for the many, many linkages needed. The new design has snap-fit pivots similar to Lego Technic axles printed right into the linkage elements, as well as snap connectors to hold the servos down. This eliminates the need for 45 screws and cuts assembly time from 30 minutes to about six, with no tools required. And although [Will] doesn’t mention it, it must save a bunch of weight, too.

Everything comes at a cost, of course, and such huge gains in assembly ease are no exception. [Will] details this in the video below, including printing the parts in the right orientation to handle the forces exerted both during assembly and in use. And while it’s hard to beat a five-fold reduction in assembly time, he might be able to reduce that even more with a few print-in-place pivots.

Continue reading “Screwless Eyeballs Are A Lesson In Design-For-Assembly”

Baffle The Normies With This Binary Thermometer

We think it’s OK to admit that when someone puts a binary display on a project, it’s just a thinly veiled excuse to get more blinkenlights into the world. That and it’s a way to flex a little on the normies; you’ve gone pretty far down the tech rabbit hole to quickly decipher something like this binary-display thermometer, after all.

Don’t get us wrong, we think those are both perfectly valid reasons for going binary. And all things considered, a binary display for a thermometer like [Clovis Fritzen]’s is much simpler to decode than, say, a clock. Plus, it seems a bit that this build was undertaken at least partially as an exercise in Charlieplexing, which [Clovis] uses to drive the six-bit LED display using only three lines of GPIO from the Digispark ATtiny85 board running the show.

The temperature sensor is a DHT11, whose output is read by the microcontroller before being converted to binary and sent to the six-bit display. The 64-degree range is perfect for displaying the full range of temperatures most of us would consider normal, although we’d find 63°C a touch torrid so maybe there’s a little too much resolution on the upper end of the scale. Then again, switching to Fahrenheit would shift it toward the hypothermia end of the scale, which isn’t helpful. And you can just forget about Kelvin.

Reverse Engineering Keeps Early Ford EVs Rolling

With all the EV hype in the air, you’d be forgiven for thinking electric vehicles are something new. But of course, EVs go way, way back, to the early 19th century by some reckonings. More recently but still pretty old-school were Ford’s Think line of NEVs, or neighborhood electric vehicles. These were commercially available in the early 2000s, and something like 7,200 of the slightly souped-up golf carts made it into retirement communities and gated neighborhoods.

But as Think aficionado [Hagan Walker] relates, the Achille’s heel of these quirky EVs was its instrument cluster, which had a nasty habit of going bad and taking the whole vehicle down with it, sometimes in flames. So he undertook the effort of completely reverse engineering the original cluster, with the goal of building a plug-in replacement.

The reverse engineering effort itself is pretty interesting, and worth a watch. The microcontroller seems to be the primary point of failure on the cluster, probably getting fried by some stray transients. Luckily, the microcontroller is still available, and swapping it out is pretty easy thanks to chunky early-2000s SMD components. Programming the MCU, however, is a little tricky. [Hagan] extracted the code from a working cluster and created a hex file, making it easy to flash the new MCU. He has a bunch of other videos, too, covering everything from basic diagnostics to lithium battery swaps for the original golf cart batteries that powered the vehicle.

True, there weren’t many of these EVs made, and fewer still are on the road today. But they’re not without their charm, and keeping the ones that are still around from becoming lawn ornaments — or worse — seems like a noble effort.

Continue reading “Reverse Engineering Keeps Early Ford EVs Rolling”