Unplayable Holophonor Replica Is Unplayable

holophonor

You won’t find all that many props or homemade replica builds here at Hackaday, but [Harrison Krix’s] work is second to none, and his Futurama Holophonor replica is worth drooling over. [Harrison] sourced an old (and apparently grimy) clarinet from a local thrift store, which he strips clean of its keys and attachments. The body itself receives some subtle modifications from the lathe and epoxy to plug some holes. Custom-spun plastic pieces complete the rest of the body, including the meticulously crafted bell which houses 54 LEDs.

[Harrison] also whips up a breakout board for a mini Arduino Pro with 4 fading and 4 blinking channels, and some custom power supply options for the Holophonor’s base: a scratch-built fiberglass AAA battery holder and optional AC adapter jack. As an added bonus, he’s fitted the Holophonor’s stand with a set of Robot Devil hands that hold it in place. The only video is an illumination test, but it sure is pretty. You can see it below! It looks perfect, but alas is unplayable which actually makes it even more authentic.

The Holophonor is the latest in a slew of work from Volpin Props. You probably remember [Harrison’s] first Daft Punk helmet from a few years back, or the second one that followed shortly after.

Continue reading “Unplayable Holophonor Replica Is Unplayable”

Crazyflie Control With Leap And Kinect

crazieFlie03

The gang at Bitcraze is at it again, this time developing Leap Motion control for their Crazyflie quadcopter, as well as releasing a Kinect-driven autopilot proof of concept. If you haven’t seen the Crazyflie before, you may not realize how compact it is: 90mm motor to motor and only 19 grams.

As far as we can tell, the Crazyflie still needs a PC to control it, so the Leap and Kinect are natural followups. Hand control with the Leap Motion is what you’d expect: just imagine your open palm controlling it like a marionette, with the height of your hand dictating thrust. The Kinect setup looks the most promising. The guys strapped a red ball to the Crazyflie that provides a trackable object against a white backdrop. The Kinect then monitors the quadcopter while a user steers via mouse clicks. Separate PID controllers correct the roll, pitch and thrust to reposition the Crazyflie from its current coordinates to a new setpoint chosen by a click or a drag. Videos of both Leap and Kinect piloting are below.

Tight on cash but still want to take to the skies? We have two rubber-band-powered devices from earlier this week: the Ornithopter and the hilariously brilliant GoPro Slingshot.

Continue reading “Crazyflie Control With Leap And Kinect”

TightLight: A 3D Projection Mapping Assistant

tightLight

Anyone can grab a projector, plug it in, and fire a movie at the wall. If, however, you want to add some depth to your work–both metaphorical and physical–you’d better start projection mapping. Intricate surfaces like these slabs of styrofoam are excellent candidates for a stunning display, but not without introducing additional complexity to your setup. [Grady] hopes to alleviate some tedium with the TightLight (Warning: “music”).

The video shows the entire mapping process of which the Arduino plays a specific role toward the end. Before tackling any projector calibration, [Grady] needs an accurate 3D model of the projection surface, and boy does it look complicated. Good thing he has a NextEngine 3D laser scanner, which you’ll see lighting the surface red as it cruises along.

Enter the TightLight: essentially 20 CdS photocells hooked up to a Duemilanove, each of which is placed at a previously-marked point on the 3D surface. A quick calibration scan scrolls light from the projector across the X then Y axis, hitting each sensor to determine its exact position. [Grady] then merges the photocell location data with the earlier 3D model using the TouchDesigner platform, and bam: everything lines up and plays nice.

Fix A Keyboard’s Firmware With Trial, Error, And I2C

eepromKeyboardFlash

If the media shortcut keys on your keyboard don’t function correctly due to outdated firmware, the manufacturer may recommend you ship it to them for an update. [Alvaro] didn’t care to wait that long, so he cracked it open and taught himself how to mod the EEPROM. The result is a well-documented breakdown of sorting out the keyboard’s guts. Inside he finds a USB hub, which he ignores, and the keyboard controller chip, which he attacks. Two data sheets and a schematic later, [Alvaro] breaks out the logic analyzer to compare physical key presses to the keypad codes they output.

He dumps the entire EEPROM and follows up with a quick flash via I2C to change the “next song” key to instead output the letter “a”. That seems to work, so [Alvaro] combs through an HID USB usage table for some codes and has to guess which ones will properly control Spotify. He converts the media keys from “scan next” and “scan previous” to “rewind” and “fast forward.” Problem solved.

[Alvaro] had zero knowledge of keyboards prior to opening this one up. If you aren’t already taking things apart to see how they function and how to fix them, hopefully his success will persuade you to explore and learn about those “black boxes” in your home. And, if you’ve never used I2C before—or think it might be the name of a boy band—head over to [Kevin’s] tutorial on bitbanging I2C by hand.

Controlling Chromecast: AirCast APK Released

[Koush] is at it again, this time releasing AirCast, an Android app that’ll push videos to the Chromecast from Dropbox, Google Drive, and your phone’s Gallery. Astute Hackaday readers will recall that AirCast has been around for a few weeks now, but limited to only his whitelisted Chromecast. As [Koush] explains it, he had to reverse engineer the protocols and now he simply avoids the Chromecast SDK entirely. If you’re lucky enough to have a Chromecast, you’ll want to hurry and grab the APK (direct download link) and have some fun with it before it self-destructs. [Koush] isn’t ready to release it for more than a 48 hour period, but we encourage you to take advantage of AirCast and contribute to his call for feedback, bugs, and crash reports. You have a little under a day left.

See “AllCast” work its magic in the video below. No, that’s not a typo. Apparently [Koush] has been struggling with available names for the app, and you’ll hear him call it “AllCast” in the Youtube video. That name was taken for some other product, though, and “AirCast” has now replaced it. If you suddenly regret not immediately ordering a Chromecast and are sitting this one out, go read [Mike’s] rant and get psyched up for when they’re back in stock.

Continue reading “Controlling Chromecast: AirCast APK Released”

NESPo: Another 3D Printed Portable NES

portableNESSide2

Grab your favorite cartridge and violently blow into the end, because [Dave Nunez] is sending us on a nostalgia trip with his 3D printed portable NES. He takes the typical route of chopping up a Nintendo on a chip (NOAC) retro machine rather than sacrifice a real NES, and opts for a NiMH battery over lithium (which isn’t a bad idea; they can burst into flames if you charge them incorrectly). The battery life is, however, tolerable: 2.5 to 3 hours.

All the components are packed into a custom-made 3D printed PLA enclosure, which [Dave] kindly shares on thingiverse. He also decided to 3D print each of the buttons and their bezels/housings, which he then topped off by cutting acrylic sheets that seal up the front and back. As a final touch, [Dave] slips in some custom art under the acrylic and mounts a printed LED nameplate in the corner.

We’ve seen [Dave’s] work at Hackaday before, when he built a one-size-fits-all-consoles arcade controller.

Wrist-mounted Flamethrower On The Cheap

flamethrowerGlove

Everyone wants to be Iron Man these days, but without a spare arc reactor lying around, you’ll have to settle on building a backup suit component. [Xavier] documents his take on the wrist-mounted flamethrower in this dirt-cheap and unquestionably dangerous build. Cobbled together from parts found at a local hardware store, this glove has the typical “ready” setting with a small flame that, upon turning one’s wrist, erupts into a loud and large swath of flames. We suspect the mask worn in the video below doubles as identity protection and to prevent accidental hair conflagrations. Skip to the end for a demonstration.

Though not the first flamethrower build at Hackaday, [Xavier’s] is the only one with a guide and is certainly the cheapest. Be sure to look into the second generation of the Prometheus flame thrower and its subsequent third version that we featured a couple of years back. Not everyone’s flamethrower is wrist-mounted; some people put them inside a trombone. Remember, don’t try this at home.

Continue reading “Wrist-mounted Flamethrower On The Cheap”