Patent Spat Leaves DJI Owing Textron $279M

Patents are the murky waters where technical jargon and legalese meet, and in this vast grey area of interpretation, DJI now owes Textron $279M.

At issue in the case were two patents issued to Textron (#8,014,909 and #9,162,752) regarding aircraft control systems for relative positioning to other vehicles and automatic hovering. The jury found that Textron’s intellectual property (IP) had been infringed and that damages amounted to $279M. DJI asserts that Textron’s patents are not valid and will appeal the decision. Appeals in patent trials are handled by the Federal Circuit and can be kicked up to the US Supreme Court, so don’t expect a final decision in the case anytime soon.

We’re not lawyers, so we won’t comment on the merits of the case, but, while it was a jury trial, it was one of many cases decided in the court of Judge Alan Albright, who has been the focus of scrutiny despite efforts to assign fewer cases to his docket amid wider efforts to stymie venue shopping in patent cases. Despite these efforts, the Western District of Texas is such a popular venue for patent cases that Berkeley offers a CEU on going to trial in Waco.

If you’re curious about more IP shenanigans, checkout the Honda mass takedown, the legality of making something similar, or why E3D patents some of their work.

A human hand holds a stack of several plexiglass sheets with needles glued into the ends. Very faint lines can be seen in the transparent stackup.

Biomimetic Building Facades To Reduce HVAC Loads

Buildings currently consume about 50% of the world’s electricity, so finding ways to reduce the loads they place on the grid can save money and reduce carbon emissions. Scientists at the University of Toronto have developed an “optofluidic” system for tuning light coming into a building.

The researchers devised a biomimetic system inspired by the multi-layered skins of squid and chameleons for active camouflage to be able to actively control light intensity, spectrum, and scattering independently. While there are plenty of technologies that can regulate these properties, doing so independently has been too complicated a task for current window shades or electrochromic devices.

To make the prototype devices (15 × 15 × 2 cm), 3 mm PMMA sheets were stacked after millifluidic channels (1.5 mm deep and 6.35 mm wide) were CNC milled into the sheets. Fluids could be injected and removed by needles glued into the ends of the channels. By using different fluids in the channels, researchers were able to tune various aspects of the incoming light. Scaled up, one application of the system could be to keep buildings cooler on hot days without keeping out IR on colder days which is one disadvantage of static window coatings currently in use.

If you want to control some of the light going OUT of your windows, maybe you should try building this smart LED curtain instead?

Continue reading “Biomimetic Building Facades To Reduce HVAC Loads”

A series of food items along the bottom of the frame including an unidentified grey block, an almond, a food supplement capsule, a square of seaweed, a square of beeswax, and a crumpled up piece of gold foil. At the top of the image is a fully assembled battery with electrodes sticking out the ends of a block of beeswax and a half finished battery with the nori separator visible.

A Delicious Advancement In Battery Tech

Electronics have been sent to some pretty extreme environments, but inside a living host is a particularly tricky set of conditions, especially if you don’t want to damage the organism ingesting the equipment. One step in that direction could be an edible battery cell. (via Electrek)

Developed by scientists at the Istituto Italiano di Tecnologia, this new cell is made from food additives and ingredients to skirt any nasty side effects one might experience from ingesting a less palatable battery chemistry like NiCd. A riboflavin anode is coupled with a quercetin cathode, both with activated carbon to increase conductivity. Encapsulated in beeswax and with a separator made of nori algae, the battery is completely non-toxic.

The cell generates a modest 0.65V with a max sustained current of 48 µA for 12 min, but it shows promise as a power source for ingestible medical sensors, even if it won’t be powering your next mobile Raspberry Pi project. This isn’t the first time we’ve seen edible electronics; check out this screaming chocolate rabbit or robots made of candy.

A black and white image of the Sun and Earth with a series of lines radiating out from the sun and bisecting rings circumscribed around it. On the Earth are three dots with the text "Active Server" on one exposed to the Sun and two dots representing "Inactive Server"s on the dark side.

Solar Protocol Envisions A Solar-Powered Web

The transition to low carbon energy is an important part of mitigating climate change, and the faster we can manage, the better. One project looking at how we could reduce the energy requirements of the web to more quickly adopt renewable energy is Solar Protocol.

Instead of routing requests to the fastest server when a user pulls up a website, Solar Protocol routes the request to the server currently generating the greatest amount of solar power. Once a user is on a website, the experience is energy-responsive. Website style and image resolution can range based on the power left in the active server’s batteries, including an image free low power mode.

Another benefit to the project’s energy efficiency approach is a focus on only the essential parts of a page and not any of the tracking or other privacy-endangering superfluous features present on many other websites. They go into much more depth in the Solar Protocol Manifesto. As a community project, Solar Protocol is still looking for more stewards since the network can go down if an insufficient number of servers are generating electricity.

For more details on the project that inspired Solar Protocol, check out this low-tech website.

Circumvent Facial Recognition With Yarn

Knitwear can protect you from a winter chill, but what if it could keep you safe from the prying eyes of Big Brother as well? [Ottilia Westerlund] decided to put her knitting skills to the test for this anti-surveillance sweater.

[Westerlund] explains that “yarn is a programable material” containing FOR loops and other similar programming concepts transmitted as knitting patterns. In the video (after the break) she also explores the history of knitting in espionage using steganography embedded in socks and other knitwear to pass intelligence in unobtrusive ways. This lead to the restriction of shipping handmade knit goods in WWII by the UK government.

Back in the modern day, [Westerlund] took the Hyperface pattern developed by the Adam Harvey and turned it into a knitting pattern. Designed to circumvent detection by Viola-Jones based facial detection systems, the pattern presents a computer vision system with a number of “faces” to distract it from covered human faces in an image. While the knitted jumper (sweater for us Americans) can confuse certain face detection systems, [Westerlund] crushes our hope of a fuzzy revolution by saying that it is unsuccessful against the increasingly prevalent neural network-based facial detection systems creeping on our day-to-day activities.

The knitting pattern is available if you want to try your hands at it, but [Westerlund] warns it’s a bit of a pain to actually implement. If you want to try knitting and tech mashup, check out this knitting clock or this software to turn 3D models into knitting patterns.

Continue reading “Circumvent Facial Recognition With Yarn”

A "portable" computer in a grey enclosure. There is a small CRT on the left hand side of the face of the enclosure and a disk drive and a couple ports exposed on the right hand side. The keyboard is attached with a purple cable. A black cartridge with a grey and red label sticks out of the top of the enclosure.

Portable MSX2 Brings The Fun On The Go

Something of a rarity in the US, the MSX computer standard was rather popular in other parts of the world but mostly existed in the computer-in-a-keyboard format popular in the 80s. [Aron Hoekstra aka “nullvalue”] wanted to build an MSX2 of their own, but decided to build it in a period-appropriate luggable form factor.

This build really tries to make the computer as plausibly vintage as possible including an actual CRT for the display instead of using an easier to obtain and package LCD. Computing is accomplished with an Omega Home Computer MSX2 SBC by [Sergey Kiselev] which uses components that could have been found when the MSX computers were in production. While 3D printing wasn’t widespread in the 80s, we can assume any of the plastic parts like the internal mounts would have been injection molded instead.

An impressive number of different techniques were used to bring this computer to life including PCB design, 3D printing, CNC, and plenty of soldering. After some troubleshooting on the 50 pin cartridge connector and all the assembly, [Hoekstra]’s Mega Omega MSX2 Portable Computer makes for a very impressive reimagining of the MSX platform that feels like a product that might have actually existed at the time.

If you want more MSX hacks, checkout how to add a Wii Nunchuck or PS2 or USB keyboards to your MSX.

Continue reading “Portable MSX2 Brings The Fun On The Go”

A red Tesla Model 3 converted into a pickup truck with a black lumber rack extending over the roof of the cab sits in a grey garage. A black and silver charging robot is approaching its charging port from the right side attached to a black cable. The charging bot is mostly a series of tubes attached to a wheeled platform and the charging connector itself is attached to a linear actuator to insert the charging device.

Truckla Gets An Open Source Charging Buddy

More than three years have passed since Tesla announced its Cybertruck, and while not a one has been delivered, the first Tesla truck, Truckla, has kept on truckin’. [Simone Giertz] just posted an update of what Truckla has been up to since it was built.

[Giertz] and friend’s DIT (do-it-together) truck was something of an internet sensation when it was revealed several months before the official Tesla Cybertruck. As with many of our own projects, while it was technically done, it still had some rough edges that kept it from being truly finished, like a lack of proper waterproofing or a tailgate that didn’t fold.

Deciding enough was enough, [Giertz] brought Truckla to [Marcos Ramirez] and [Ross Huber] to fix the waterproofing and broken tailgate while she went to [Viam Labs] to build Chargla, an Open Source charging bot for Truckla. The charging bot uses a linear actuator on a rover platform to dock with the charging port and is guided by a computer vision system. Two Raspberry Pis power handle the processing for the operation. We’re anxious to see what’s next in [Giertz]’s quest of “picking up the broken promises of the car world.”

If you want to see some more EV charger hacks, check out this Arduino-Based charger and the J1772 Hydra.

Continue reading “Truckla Gets An Open Source Charging Buddy”