Liquid cooled Raspberry Pi with mineral oil

Liquid Cooling Overclocked Raspberry Pi With Style

[HydroGraphix HeadQuarters] has earned his name with this one. While he is using mineral oil instead of hydro, he’s certainly done a nice job with the graphics of it. The ‘it’ in questions is an overclocked Raspberry Pi 3 in a transparent container filled with mineral oil, and with a circulating fan.

He’s had no problem running the Pi at 1.45 GHz while running a Nintendo 64 emulator, getting between 40 °C and 50 °C. The circulating fan is a five volt computer USB fan. It’s hard to tell if the oil is actually moving, but we’re pretty sure we see some doing so near the end of the video below the break.

Mineral oil is not electrically conductive, and is often used to prevent arcing between components on high voltage multiplier boards, but those components are always soldered together. If you’ve ever worked with mineral oil, you know that it creeps into every nook and cranny, making us wonder if it might work its way between some of the (non-soldered) contacts in the various USB connectors on this Raspberry Pi. Probably not, but those of us with experience with it can attest to it’s insidiousness.

Continue reading “Liquid Cooling Overclocked Raspberry Pi With Style”

BionicCobot and human working together

Pneumatic Rotary Vane Joints Lend A Gentle Helping Hand

Festo has released a video showing the workings of their BionicCobot, a pneumatic robot arm developed for lending a helping hand to humans at a workstation. Since it works intimately with humans, it has to be safe, producing no harmful movements, and reacting when encountering an obstacle such as an arm containing delicate human bone. This it does using pneumatics and rotary vanes.

Rotary vane in action
Rotary vane in action

The arm has seven degrees of freedom, three in the shoulder, one in the elbow, another in the lower arm, and two in the wrist. But you won’t find any electric motor or gears. Instead each contains a rotary vane. Compressed air pushes on both sides of the vane. If the air pressure is the same on both sides of the vane then it doesn’t rotate. But with more pressure on one side than the other, the vane rotates. This is much like in a human arm, where two muscles work together to bend the arm, one muscle contracts while the other relaxes. Together they’re referred to as an antagonistic pair. In addition, each joint has a circuit board with two pressure sensors for monitoring the joint.

Using pneumatics, if an obstacle is encountered, the pressure can be released, making it instantly safe. And air being compressible, the joint can behave like a spring, further adding to the safeness. By controlling the pressure, the spring can be made more or less tense.

You can see it in action in the video below the break, along with more details such as how they use ROS, the popular, open system Robot Operating System which we’ve seen here a lot before, along with their Festo valve bank, one of which our own [James Hobson] used for his slick elysium exoskeleton. The video also covers how they handled running the hoses, the kinematics and the UI software.

Continue reading “Pneumatic Rotary Vane Joints Lend A Gentle Helping Hand”

Neural Networks: You’ve Got It So Easy

Neural networks are all the rage right now with increasing numbers of hackers, students, researchers, and businesses getting involved. The last resurgence was in the 80s and 90s, when there was little or no World Wide Web and few neural network tools. The current resurgence started around 2006. From a hacker’s perspective, what tools and other resources were available back then, what’s available now, and what should we expect for the future? For myself, a GPU on the Raspberry Pi would be nice.

Continue reading “Neural Networks: You’ve Got It So Easy”

Networking: Pin The Tail On The Headless Raspberry Pi

Eager to get deeper into robotics after dipping my toe in the water with my BB-8 droid, I purchased a Raspberry Pi 3 Model B. The first step was to connect to it. But while it has built-in 802.11n wireless, I at first didn’t have a wireless access point, though I eventually did get one. That meant I went through different ways of finding it and connecting to it with my desktop computer. Surely there are others seeking to do the same so let’s take a look at the secret incantations used to connect a Pi to a computer directly, and indirectly.

Continue reading “Networking: Pin The Tail On The Headless Raspberry Pi”

Introduction To TensorFlow

I had great fun writing neural network software in the 90s, and I have been anxious to try creating some using TensorFlow.

Google’s machine intelligence framework is the new hotness right now. And when TensorFlow became installable on the Raspberry Pi, working with it became very easy to do. In a short time I made a neural network that counts in binary. So I thought I’d pass on what I’ve learned so far. Hopefully this makes it easier for anyone else who wants to try it, or for anyone who just wants some insight into neural networks.

Continue reading “Introduction To TensorFlow”

Adulterated food detection

Hackaday Prize Entry: Detecting Adulterated Food Using AI

Adulterated food is food that has a substance added to it to save on manufacturing costs. It can have a negative effect, it can reduce the food’s potency or it can have no effect at all. In many cases it’s done illegally. It’s also a widespread problem, one which [G. Vignesh] has decided to take on as his entry for the 2017 Hackaday Prize, an AI Based Adulteration Detector.

On his hackaday.io Project Details page he outlines some existing methods for testing food, some which you can do at home: adulterated sugar may have chalk added to it, so put it in water and the sugar will dissolve while the chalk will not. His approach is to instead take high-definition photos of the food and, on a Raspberry Pi, apply filters to them to reveal various properties such as density, size, color, texture and so on. He also mentions doing image analysis using a deep learning neural network. This project touches us all and we’ll be watching it with interest.

If all this talk of adulterated food makes you nervous about your food supply then consider growing our own, hacker style. One such project we’ve seen here on Hackaday is Farmbot, an open-source CNC farming robot. Another such is MIT’s OpenAg Food Computer, a robotic control and monitoring growing chamber.

PC in a mouse

PC In A Mouse

[Slider2732] got his Orange Pi Zero working with a 3 watt amplifier, wireless keyboard (with built-in mouse), and car reversing monitor. But he needed a case to house it in. He remembered that he used to make parameters for ghost hunting by filling PC mouse cases with all sorts of electronics. So why not put the Orange Pi Zero in a mouse too? Looking through his mouse collection, he picked out an old Logitech optical mouse and went to work.

We like that the Logitech has transparent bottom halves, perfect for proving to anyone who might be skeptical that the PC really is in the mouse. A great enhancement we think would be to make the mouse actually be the mouse too! But there doesn’t seem to be enough room left for that. What’s smaller than a Pi Zero that will also run the armbian Linux distribution, OpenELEC Mediacenter, Kodi and a bunch of games?

He even set up the wireless networking for watching YouTube videos. Check out the build and demo video after the break.

Continue reading “PC In A Mouse”