Hackaday Prize Entry: Economical Bionic Leg

When it comes to high-tech bionic legs for amputees, all the cool stuff is titanium, carbon fiber or other, more exotic materials. With carbon fiber “blades” all the rage, it’s easy to forget that simpler technologies still work, and could be made to work even better with the addition of some inexpensive electronics. The Economical Bionic Leg project is the result of that idea.

Project creators [PremJ20] and [G.Vignesh] aren’t kidding about bringing the cost of these bionic legs down. The target goal is $60 per, with stainless steel and silicon rubber as a cheaper alternative to carbon fiber — the rubber would be molded to fit the amputated region. The heart of the project is a Particle Photon development board, with a flex sensor and accelerometer monitoring the prosthesis and supplying data to the cloud. It’s essentially a basic prosthetic leg with a monitoring system built in. Placing a sensor cuff on the regular leg, the artificial limb’s flexibility can be fine-tuned to match the two.

Will this inexpensive bionic leg ever compete in the Olympics, like [Oscar Pistorious] run in the 2012 London event? Probably not — the tech that goes into artificial limbs has the same amount of material science going into it as F1 racing and turbojet design. Still, this is a very cheap way to bring tech into something that desperately needs to be cheaper, and it’s a great Hackaday Prize entry, to boot.

Head-Up Display Augments Bionic Turtle’s Reality

There’s a harsh truth underlying all robotic research: compared to evolution, we suck at making things move. Nature has a couple billion years of practice making things that can slide, hop, fly, swim and run, so why not leverage those platforms? That’s the idea behind this turtle with a navigation robot strapped to its back.

This reminds us somewhat of an alternative universe sci-fi story by S.M. Stirling called The Sky People.  In the story, Venus is teeming with dinosaurs that Terran colonists use as beasts of burden with brain implants that stimulate pleasure centers to control them. While the team led by [Phill Seung-Lee] at the Korean Advanced Institute of Science and Technology isn’t likely to get as much work from the red-eared slider turtle as the colonists in the story got from their bionic dinosaurs, there’s still plenty to learn from a setup like this. Using what amounts to a head-up display for the turtle in the form of a strip of LEDs, along with a food dispenser for positive reinforcement, the bionic terrapin is trained to associate food with the flashing LEDs. The LEDs are then used as cues as the turtle navigates between waypoints in a tank. Sadly, the full article is behind a paywall, but the video below gives you a taste of the gripping action.

Looking for something between amphibian and fictional dinosaurs to play mind games with? Why not make your best friend bionic? Continue reading “Head-Up Display Augments Bionic Turtle’s Reality”

Pneumatic Rotary Vane Joints Lend A Gentle Helping Hand

Festo has released a video showing the workings of their BionicCobot, a pneumatic robot arm developed for lending a helping hand to humans at a workstation. Since it works intimately with humans, it has to be safe, producing no harmful movements, and reacting when encountering an obstacle such as an arm containing delicate human bone. This it does using pneumatics and rotary vanes.

Rotary vane in action
Rotary vane in action

The arm has seven degrees of freedom, three in the shoulder, one in the elbow, another in the lower arm, and two in the wrist. But you won’t find any electric motor or gears. Instead each contains a rotary vane. Compressed air pushes on both sides of the vane. If the air pressure is the same on both sides of the vane then it doesn’t rotate. But with more pressure on one side than the other, the vane rotates. This is much like in a human arm, where two muscles work together to bend the arm, one muscle contracts while the other relaxes. Together they’re referred to as an antagonistic pair. In addition, each joint has a circuit board with two pressure sensors for monitoring the joint.

Using pneumatics, if an obstacle is encountered, the pressure can be released, making it instantly safe. And air being compressible, the joint can behave like a spring, further adding to the safeness. By controlling the pressure, the spring can be made more or less tense.

You can see it in action in the video below the break, along with more details such as how they use ROS, the popular, open system Robot Operating System which we’ve seen here a lot before, along with their Festo valve bank, one of which our own [James Hobson] used for his slick elysium exoskeleton. The video also covers how they handled running the hoses, the kinematics and the UI software.

Continue reading “Pneumatic Rotary Vane Joints Lend A Gentle Helping Hand”

Hedberg is a Bionic Hand Made From a Single Keurig

Developing into a modern hacker and tinkerer requires a lot of things: electronics study, programming knowledge, and patience (among many other things). But, the most important quality a hacker can have is curiosity. The desire to see how things work is what drives most budding hackers towards the dismantling of family appliances and electronic gadgets.

Many end up scavenging parts from the things around the house for their first projects. But, with money and more ambitious builds comes the need to purchase parts off the shelf. There is, however, something to be said for the ingenuity that comes with building something solely with scavenged parts, and that’s what [Evan Booth] decided to do, in a spectacular fashion.

Continue reading “Hedberg is a Bionic Hand Made From a Single Keurig”

Hacklet 41 – Prosthetics Projects

Throughout human history, mankind has worked to enable those with disabilities. This applies especially to those who have missing limbs, either from injury or since birth. Every time technology improves, prosthetics improve along with the way. Unfortunately this now means prosthetics have become expensive systems. Hackers, makers, and engineers are working to make prosthetics more affordable, and more available to everyone. This week’s Hacklet focuses on some of the best prosthetics projects on Hackaday.io!

bionic1We start with [Open Bionics] and Affordable Bionic Hands For Amputees. The [Open Bionics] team are using 3D printers to bring the cost of a prosthetic arm and hand down from up to $100,000 USD to just $1000 USD. They’ve also reduced the time to create a custom device from weeks to just 5 days. The team’s current hand has five degrees of freedom, uses electromyography (EMG) for control, and weighs just 268 grams. [Open Bionics] discovered that many amputees are willing to trade off functions for a lighter weight device. Having a sensor and motor studded hand won’t help much if the wearer is worn out after just a couple of hours!

bionic2Next up is [yash.gajra56] and RE-ARM. RE-ARM is a prosthetic arm project which aims to help both those who have lost limbs, and those with full or partial paralysis of a limb. Movement is provided by radio control style servos. Control is via voice commands and Bluetooth from a cell phone. [Yash] has incorporated feedback into RE-ARM by using flex sensors. Processing is handled by an Arduino. We like the low-cost, low tech approach RE-ARM uses. We’d love to see everyone have access to a 3D printer, but unfortunately the world isn’t there quite yet. RE-ARM uses readily available components to build a functional prosthetic. Nice work [yash]!

bionic3[OpenBionics] brings us  Affordable Prosthetic Hands. No, you didn’t read that name wrong. There are two “Open Bionics” on Hackaday.io! This [OpenBionics] team has no space, and is based in Athens, Greece. The other [Open Bionics] team does have a space between the words, and is based in Bristol in the United Kingdom. We’re hoping the two groups can come together and collaborate now that they’re both using Hackaday.io. This [OpenBionics] team is working on prosthetic hands, in the sub $200 USD price range. The team has come up with a novel thumb design which provides nearly full functionality with only one rotating joint. [OpenBionics] also allows their users to selectively lock digits, which allows for up to 144 different grasping postures.

 

bionic4

Finally we have [Daniel Mead] with Third World Medical Equipment (Arm). [Daniel] created this project as an independent study back in high school. The idea is create a simple arm with a gripper out of cheap or freely available items. The gripper is fashioned from a bicycle brake. The fitting system is especially novel. [Daniel] used an old soda bottle to create a custom mold for the amputee’s residual limb. Plastic bottles are generally made of polyethylene terephthalate, or PET, a thermoplastic. [Daniel] placed a wet sock over his arm, and a plastic bottle over the sock. Holding the plastic bottle above a fire created enough heat to shrink the bottle to his arm. the sock provided room for padding, and insulated him from getting burned during the molding process.

Not satisfied? Want more prosthetics? Check out the Prosthetics list over on Hackaday.io! If any of these projects inspire you, don’t forget that prosthetics are a great starting point for an entry in The Hackaday Prize!

That’s about all the time we have for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

THP Semifinalist: B10N1C Yourself

The Hackaday Prize has had a few medical devices make the semifinalist cut, and of course wearables are on the list. How about implantables? That’s what Bionic Yourself 2.0 (or B10N1C) is doing with an implantable microcontroller, battery, and sensor system.

The hardware in B10N1C includes a electromyography sensor for measuring muscle activity, an accelerometer, a vibration motor, RFID reader/writer, temperature sensor, and – get this – a LED bar graph that will shine a light through the skin. That’s something we’ve never seen before, and if you’re becoming a cyborg, it’s a nice feature to have.

As with anything you would implant in your body, safety is a prime consideration for Bionic.the Lithium battery can be overcharged (yes, through a wireless charging setup) to 10V without a risk of fire or explosion, can be hit with a hammer, and can even be punctured. The enclosure is medical grade silicone, the contacts are medical grade stainless steel, and there’s a humidity sensor inside that will radio a message saying its time to remove the device if the moisture level in the enclosure increases.

Because the device is implanted under the skin, being able to recharge and update the code without a physical connection is the name of the game. There’s a coil for wireless charging, and a lot of work is going into over the air firmware updating. It’s an astonishing project, and while most people probably won’t opt for a cyborg implant, it will look really cool.


SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Building a prosthetic leg from scratch

[Radek] from Poland sent in a neat video of a bionic prosthetic leg he made for one of his patients. Even though [Radek] says it’s a ‘prototype of a prototype,’ we’d have to agree with him that it’s a very neat build that could provide inexpensive motorized prosthetic legs to amputees in the future.

[Radek] has been working on his project for about two years now, after building the motor and electronics by hand. The leg is powered by 1.5 kilogram battery pack – no details on the chemistry of the batteries, but [Radek] says it will last 12 hours on one charge. There are also small vibration sensors in the leg for a bit of feedback, and a few switches so the knee joint can be operated by the stump.

If you’re wondering where [Radek] got the proper tools and materials to make a carbon fiber prosthesis, he works for Carbon Prosthetics where builds simple prosthetic devices. His bionic leg creation looks really cool, and he says the final product will be much less expensive than the very high-end bionic prosthetic legs.

[Radek] was kind enough to share some more videos and a few pictures of his robotic prosthetic leg; you can check those out after the break.

Continue reading “Building a prosthetic leg from scratch”