Home Automation Terminal With Cyberpunk Style

The OLKB-Terminal designed by [Jeff Eberl] doesn’t have a battery, can’t fold up (even if it seems like it could), and is only portable in the sense that you can literally pick it up and move it somewhere else. So arguably it’s not really a cyberdeck per se, but it certainly does look the part. If you need to be furiously typing out lines of code in a dimly lit near-future hacker’s den, this should do you nicely.

[Jeff] has provided everything you’d need to recreate this slick little machine on your own, though he does warn that some of the hardware decisions were based simply on what he had on-hand at the time, and that better or cheaper options may exist. So for example if you don’t want to use the Raspberry Pi 4, you can easily swap it out for some other single-board computer. Though if you want to change something better integrated, like the LCD panel, it will probably require modifications to the 3D printed components.

The rear electronics tray offers plenty of room for expansion.

The slim mechanical keyboard that [Jeff] used for the OLKB-Terminal, which in some ways set the tone for the whole design, is actually a completely separate open source project from [Victor Lucachi]. The VOID30 is a 3D printed, 30% handwired ortholinear keyboard that runs the popular QMK firmware on an Arduino Pro Micro. He’s implemented a couple tweaks, namely using a USB-C equipped Arduino clone, but otherwise it’s the same as upstream. So if you’re not in the market for a little bedside cyberpunk terminal but love its sleek keyboard, you’re in luck.

Software wise, [Jeff] has the OLKB-Terminal hooked into his larger Home Assistant system. This gives him an attractive status display of the whole network, and with just a tap on the terminal’s seven inch touch screen, he’s able to directly control devices around the home. That said, at the end of the day it’s just a Raspberry Pi, so it could really run whatever you want.

While cyberdeck builds might be all the rage right now, we do appreciate projects that bring those same design tenets to the desktop. From the gorgeous faux-retro designs of [Oriol Ferrer Mesià] to modernized pieces of vintage hardware, truly personal computers that can be easily upgraded and repaired don’t have to be limited to something you can lug around with a guitar strap.

Astro Pi Mk II, The New Raspberry Pi Hardware Headed To The Space Station

Back in 2015, European Space Agency (ESA) astronaut Tim Peake brought a pair of specially equipped Raspberry Pi computers, nicknamed Izzy and Ed, onto the International Space Station and invited students back on Earth to develop software for them as part of the Astro Pi Challenge. To date, more than 50,000 young people have had their code run on one of the single-board computers; making them arguably the most popular, and surely the most traveled, Raspberry Pis in the solar system.

While Izzy and Ed are still going strong, the ESA has decided it’s about time these veteran Raspberries finally get the retirement they’re due. Set to make the journey to the ISS in December aboard a SpaceX Cargo Dragon, the new Astro Pi MK II hardware looks quite similar to the original 2015 version at first glance. But a peek inside its 6063-grade aluminium flight case reveals plenty of new and improved gear, including a Raspberry Pi 4 Model B with 8 GB RAM.

The beefier hardware will no doubt be appreciated by students looking to push the envelope. While the majority of Python programs submitted to the Astro Pi program did little more than poll the current reading from the unit’s temperature or humidity sensors and scroll messages for the astronauts on the Astro Pi’s LED matrix, some of the more advanced projects were aimed at performing legitimate space research. From using the onboard camera to image the Earth and make weather predictions to attempting to map the planet’s magnetic field, code submitted from teams of older students will certainly benefit from the improved computational performance and expanded RAM of the newest Pi.

As with the original Astro Pi, the ESA and the Raspberry Pi Foundation have shared plenty of technical details about these space-rated Linux boxes. After all, students are expected to develop and test their code on essentially the same hardware down here on Earth before it gets beamed up to the orbiting computers. So let’s take a quick look at the new hardware inside Astro Pi MK II, and what sort of research it should enable for students in 2022 and beyond.

Continue reading “Astro Pi Mk II, The New Raspberry Pi Hardware Headed To The Space Station”

Building A Custom Linux Single Board Computer Just To Play Spotify

If you want to hook up an existing stereo or amplifier to Spotify, there’s a fair few options on the market. You can even just order a Raspberry Pi and be done with it. [Evan Hailey] went his own way, however, and built his own Spotify Box from scratch.

[Evan] even made this tidy wooden enclosure, learning yet more along the way!
Housed inside a tidy little wooden enclosure of his own creation, the Spotify Box can turn any amplifier into a remote-controlled Spotify player via Spotify Connect. Pick the songs on your smartphone, and they’ll play from the Spotify Box as simple as that.

The project is based on the Allwinner V3S, a system-on-chip with a 1.2GHz ARM-Cortex-A7 core, 64MB of DDR2 RAM, and an Ethernet transceiver for good measure. There’s also a high-quality audio codec built in, making it perfect for this application. It’s thrown onto a four-layer PCB of [Evan’s] own design, and paired with a Wi-Fi and BlueTooth transceiver, RJ-45 and RCA jacks, a push-button and some LEDs. There’s also an SD card for storage.

With a custom Linux install brewed up using Buildroot, [Evan] was able to get a barebones system running Spotifyd while communicating with the network. With that done, it was as simple as hooking up the Spotify Box to an amp and grooving out to some tunes.

Along the way, [Evan] learned all about compiling drivers and working with embedded Linux, as well as how to take a bare SoC and build it into a fully-functional single-board computer. When someone else says they “made” a Spotify player, he presumably gets to clear his throat.

If you fancy retro computers, consider interfacing Spotify with your classic Mac instead!

[Thanks to Jay Carlson for the tip!]

Is There A Simpler Aircraft Than This Electric Paramotor?

The dream of taking to the air has probably ensnared more than a few of us, but for most it remains elusive as the safety, regulatory, and training frameworks surrounding powered flight make it not an endeavour for the faint-hearted. [Justine Haupt] has probably delivered the simplest possible powered aircraft with her Blimp Drive, a twin-prop electric add-on for her paragliding rig that allows her to self-launch, and to sustain her flights while soaring.

It takes the form of a carbon-fibre tube with large drone motors and props U-bolted to each end, and a set of brackets in the centre of laid carbon fibre over 3D-printed forms to which the battery and paraglider harness are attached. The whole thing is lightweight and quiet, and because of the two contra-rotating propellers it also doesn’t possess the torque issues that would affect a single propeller craft.

We’re not fliers or paragliders here at Hackaday, so our impression of the craft in use doesn’t come from the perspective of a pilot. But its simplicity and ease of getting into the air looks to be unmatched by anything else, and we have to admit a tinge of envy as in the video below the break she flies over the beach that’s her test site.

If you recognise Justine from past Hackaday articles, you’re on the right track. Probably most memorable is her rotary cellphone.

Continue reading “Is There A Simpler Aircraft Than This Electric Paramotor?”

Retro TV Shows Off Family Memories With Raspberry Pi

Fascinated by the look and feel of vintage electronics, [Democracity] decided to turn an old Sony Micro TV into a digital picture frame that would cycle through old family photos in style. You’d think the modern IPS widescreen display would stick out like a sore thumb, but thanks to the clever application of a 1/16″ black acrylic bezel and the original glass still installed in the front panel, the new hardware blends in exceptionally well.

Driving the new display is a Raspberry Pi 4, which might sound overkill, but considering the front-end is being provided by DAKboard through Chromium, we can understand the desire for some extra horsepower and RAM. If it were us we’d probably have gone with a less powerful board and a few Python scripts, and of course there are a few turn-key open source solutions out there, though we’ll admit that this is probably faster and easier to setup.

[Democracity] provides some general information on how he took apart the TV and grafted in the new gear, but of course the exact steps will vary a bit depending on which old TV you end up sending to the big parts bin in the sky. We did like that he made sure to keep all the mechanisms for the buttons and knobs intact, so even if they don’t do anything, you can still fiddle around with them.

Otherwise, his steps for setting up a headless Chromium instance are probably more widely applicable. As are the tips about setting up this particular LCD module and getting the display rotated into the proper orientation. If you just follow along for that part of the guide, you can spin up your own stand-alone Raspberry Pi DAKboard endpoint to take the service for a test drive.

It probably won’t come as much of a surprise to hear that this isn’t the first time [Democracity] has upgraded a piece of vintage hardware. Back in 2017, we covered this gorgeous art deco speaker that he outfitted with RGB LEDs and an Amazon Echo Dot. As with the previous post, it’s likely some commenters will be upset that a vintage piece of gear has been gutted for this project. But we’d counter that by saying his family is going to get a lot more enjoyment out of this beautiful piece of hardware now than they would have if it was still collecting dust in a closet.

Spooky Coffin Bell Spooks Passers By On Halloween

Being buried alive isn’t fun, we imagine. Fear of it led to the development of various safety coffin ideas in the 18th and 19th centuries, and [Glen Akins] wonderful Halloween prop riffs on that tradition today. 

The safety coffin was a simple solution for those afraid that this might happen to them. One concept had a bell which was installed above freshly dug graves with a string extending into the coffin. One who found themselves accidentally buried alive could then pull the string to ring the bell and summon help.

[Glen’s] installation eliminates the coffin and the dead body, and simply mounts a bell on a post. Inside, there’s an ultrasonic rangefinder that detects passers by. When someone walks closely enough to the prop, a microcontroller triggers a servo which rings the bell with a haunting urgency.

It’s a simple build, but appropriately installed with its LED lighting, it really does pop. It would be a wonderful way to add atmosphere and mood to a Hallowe’en party or haunted house. We’ve seen some great Hallowe’en hacks over the years, and some of the best are pumpkins. Video after the break.

Continue reading “Spooky Coffin Bell Spooks Passers By On Halloween”

A weld bead laid down with homemade CO2

Cooking Up A Batch Of Homebrew Welding Gas

You know the feeling — you’re making good progress on a weekend project, you’re really in the groove, things are going right. Right up until you run out of That One Thing™ that you can’t do without, the only store that sells it is closed, and you get a sudden case of whiplash as your progress hits a virtual brick wall.

Of course, every challenge holds the opportunity to hack your way around it, which is how [Lucas] ended up building this carbon dioxide generator. The “IG” in MIG welding stands for the “inert gas” that floods the weld pool and keeps the melted metal — the “M” in MIG — from rapidly oxidizing and ruining the weld. Welders often use either straight CO2 or a mix of CO2 and argon as a MIG shielding gas, which they normally get from a commercial gas supplier, generally on non-weekend days.

[Lucas] turned to grade-school chemistry for his CO2 generator, using the vigorous reaction of baking soda and vinegar to produce the gas. Version one was sketchy as all get-out; the second iteration still had some sketch factor thanks to the use of ABS pipe, but the inclusion of a relief valve should prevent the worst from happening. After some fiddling with how to get the reagents together in a controlled fashion, [Lucas] was able to generate enough CO2 to put down a decent bead — a short one, to be sure, but the video below shows that it worked.

Could this be scaled up to something for practical use? Probably not. But it’s cool to see what’s possible, and something to file away for a rainy day. And maybe [Lucas] can use this method to produce CO2 for his homemade laser tube. But again, probably not.

Continue reading “Cooking Up A Batch Of Homebrew Welding Gas”