DIY Barrel Rifling With 3D Printed Help

[Jeff Rodriguez] has been busy testing a feasible DIY method for rifling a barrel and has found some success using salt water, a power supply, wire, and 3D printed parts to create the grooves of rifling without the need for any moving parts or cutting tools. Salt water flows between the barrel’s inside surface and a 3D-printed piece that holds wires in a precise pattern. A current flows between the barrel and the wires (which do not actually touch the inside of the barrel) and material is eroded away as a result. 10-15 minutes later there are some promising looking grooves in the test piece thanks to his DIY process.

Rifled barrels have been common since at least the 19th century (although it was certainly an intensive process) and it still remains a job best left to industrial settings; anyone who needs a barrel today normally just purchases a rifled barrel blank from a manufacturer. No one makes their own unless they want to for some reason, but that’s exactly where [Jeff] is coming from. The process looks messy, but [Jeff] has had a lot of space to experiment with a variety of different methods to get different results.

Continue reading “DIY Barrel Rifling With 3D Printed Help”

The Raspberry Pi Pico As An SDR Receiver

With the profusion of cheap RTL-SDR devices and the ever-reducing prices of more capable SDRs there might seem to be little place left for the low-bandwidth devices we’d have been happy with a decade or more ago, but there’s still plenty to be learned from something so simple. It’s something [Luigi Cruz] shows us with a simple SDR using the analogue-to-digital capabilities of the Raspberry Pi Pico, and since it works with GNU Radio we think it’s rather a neat project. CNX Software have the full story, and and quickly reveal that with its 500k samples per second bandwidth it’s not a machine that will set the SDR world on fire even when pushing Nyquist’s Law to the limit.

So with the exception of time signals and a few Long Wave broadcast stations if you live somewhere that still has them, you’ll need a fliter and receive converter to pull in anything of much use radio-wise with this SDR. But a baseband SDR with a couple of hundred kHz useful bandwidth and easy hackability through GNU Radio for the trifling cost of a Raspberry Pi Pico has to be worth a second look. You can see it in action in the video below the break, and if you’re at a loss for what to do with it take a look at Michael Ossmann and Kate Temkin’s 2019 Superconference talk.

Continue reading “The Raspberry Pi Pico As An SDR Receiver”

Nifty Soundbender Built From EBay Modules

Custom audio greeting cards are a trifling gimmick, and a hefty investment compared to their paper-based colleagues. However, the technology inside can be twisted and hacked towards more interesting ends, as [lonesoulsurfer] demonstrates with his sound-bending build.

Rather then go to the trouble and expense of gutting a greeting card, [lonesoulsurfer] simply purchases the sound recording module off eBay which often turns out cheaper anyway. It’s hacked with a couple extra buttons and a speed control, and then wired up with a reverb module that itself gets tweaked to add an echo mode. It’s all bundled up with a speaker and microphone and installed in a case that formerly held an ignition tuning analyzer from the 1970s.

The final result is quite handsome, with a wooden panel holding the speaker and a smattering of knobs, buttons, and switches to play with. After recording an audio sample, it’s possible to speed it up, slow it down, and add echo and reverb until you’re left with something unrecognizable and weird. We’ve actually seen similar projects before, like this author’s first ever article for these hallowed pages. Video after the break.

Continue reading “Nifty Soundbender Built From EBay Modules”

3D Printed Spuds Are Begging To Be Fired

The ballistics of humble potato is a time-honoured research topic for everyone who likes things that go bang. The focus of such work is usually on the launcher itself, with the projectiles being little more than an afterthought. [drenehtsral] decided that the wares of the local organic ammunition supplier were not good enough for him and his minions, so he designed and then 3D printed some rifled potato cannon slugs.

The design was done using OpenSCAD, has a number of adjustable parameters like infill and rifling. We doubt that the rifling introduces any spin, since it is being fired from a smooth bore barrel, but as always 3D printing brings the capability to quickly test different ideas. A quick search on Thingiverse shows a number of 3D printed spuds, so [drenehtsral] is not the first give it a go. However, this did bring to our attention that the field of spud gun projectiles is begging to be explored.

There is enough space inside a projectile to fit an IMU and logging electronics, which would give some very nice empirical data (providing you can recover it of course) on spin, acceleration, and trajectory that can be used to further improve designs. Spring loaded stabilising fins would be cool, and maybe someone can even manage to implement some form of guidance? The possibilities are endless! If you’re up for the challenge, please document your work it and let us know.

As you would expect we have no shortage of potato cannon themed content, ranging from cartridge firing and bolt action versions to antenna launchers and Arduino-powered fire control systems.

Three Dimensions: What Does That Really Mean?

The holy grail of display technology is to replicate what you see in the real world. This means video playback in 3D — but when it comes to displays, what is 3D anyway?

You don’t need me to tell you how far away we are from succeeding in replicating real life in a video display. Despite all the hype, there are only a couple of different approaches to faking those three-dimensions. Let’s take a look at what they are, and why they can call it 3D, but they’re not fooling us into believing we’re seeing real life… yet.

Continue reading “Three Dimensions: What Does That Really Mean?”

Reverse Polish Notation And Its Mildly Confusing Elegance

The best rummage sale purchase I ever made was a piece of hardware that used Reverse Polish Notation. I know what you’re thinking… RPN sounds like a sales gimmick and I got taken for a fool. But I assure you it’s not only real, but a true gem in the evolution of computing.

Best rummage sale find ever!
Best rummage sale find ever!

Sometime in the 1980s when I was a spotty teen, I picked up a calculator at a rummage sale. Protected by a smart plastic case, it was a pretty good condition Sinclair Scientific that turned out when I got it home to have 1975 date codes on its chips, and since anything with a Sinclair badge was worth having it became mine for a trifling amount of money. It had a set of corroded batteries that had damaged one of its terminals, but with the application of a bit of copper strip I had a working calculator.

And what a calculator! It didn’t have many buttons at a time when you judged how cool a scientific calculator was by the prolific nature of its keyboard. This one looked more akin to a run-of-the-mill arithmetic calculator, but had button modes for trigonometric functions and oddly an enter key rather than an equals sign. The handy sticker inside the case explained the mystery, this machine used so-called Reverse Polish Notation, or RPN. It spent several years on my bench before being reverently placed in a storage box of Sinclair curios which I’ve spent half a day turning the house over to find as I write this article.

Continue reading “Reverse Polish Notation And Its Mildly Confusing Elegance”

Songbird, A Mostly 3D Printed Pistol That Appears To Actually Work

[Guy in a garage] has made a 3D printed gun that not only appears to fire in the direction pointed, it can also do it multiple times. Which, by the standard of 3D printed guns, is an astounding feat. He started with .22 rifle cartridges but has since upgraded and tested the gun with .357 rounds. The link above is a playlist which starts of with an in-depth explanation of the .22 version and moves through design iterations

This gun prints on a standard FDM printer. Other 3D printable guns such as the infamous Liberator or the 3D printed metal gun need more exotic or precise 3D printing to work effectively. The secret to this gun’s ability is the barrel, which can be printed in nylon for .22 cartridges, or in ABS plus a barrel liner for .22 and .357 caliber.

A barrel liner is one way to repair a gun that has aged and is no longer shooting properly. Simply put, it is a long hardened metal tube with rifling on the inside. Some guns come out of the factory with one, and a gunsmith simply has to remove the old one and replace it. Other guns need to be bored out before a liner can be installed.

The metal liner surrounded by plastic offers enough mechanical strength for repeat firings without anyone losing a hand or an eye; though we’re not sure if we recommend firing any 3D printed gun as it’s still risky business. It’s basically like old stories of wrapping a cracked cannon in twine. The metal tries to expand out under the force of firing, but the twine, which would seem like a terrible material for cannon making, is good in tension and when wrapped tightly offers more than enough strength to hold it all together.

This is also how he got the .357 version to work. The barrel slots into the gun frame and locates itself with a rounded end. However, with the higher energy from a .357 round, this rounded end would act as a wedge and split the 3D printed frame. The fix for this was simple. Glue it back together with ABS glue, and then wrap the end of the assembly with a cable tie.

This is the first 3D printed gun we’ve seen that doesn’t look like a fantastic way to instantly lose your hand. It’s a clever trick that took some knowledge of guns and gunsmithing to put together. Despite the inevitable ethical, moral, and political debate that will ensue as this sort of thing becomes more prevalent, it is a pretty solid hack and a sign that 3D printing is starting to work with more formidable engineering challenges.