Static Recompilation Brings New Life To N64 Games

Over the past few years a number of teams have been putting a lot of effort into taking beloved Nintendo 64 games, decompiling them, and lovingly crafting them into highly portable C code. This allows for these games to not only run natively on PCs, but also for improvements to be made to the rendering engine and other components.

Yet this artisan approach to porting these games means a massive time investment, something which static binary translation (static recompilation) may conceivably speed up. Enter the N64: Recompiled project, which provides a binary translation tool to ease the translation of the N64’s binaries into C code.

This is effectively quite similar to what an emulator does in real-time, just with the goal of creating a permanent copy of the translated instructions. After this static binary translation, the C code can be compiled again, but as noted by the project’s documentation, a suitable runtime is needed to get a functional game. An example of this is the Zelda 64: Recompiled project, which uses the N64: Recompiled project at its core, while providing the necessary scaffolding and wrappers to create a working copy of The Legend of Zelda: Majora’s Mask as output.

In the video below, [Modern Vintage Gamer] takes the software for a test drive and comes away very excited about the potential it has to completely change the state of N64 emulation. To be clear, this isn’t a one-button-press solution — it still requires capable developers to roll up their sleeves and get the plumbing in. It’s going to take some time before you favorite game is supported, but the idea of breathing new life into some of the best games from the 1990s and early 2000s certainly has us eager to see where this technology goes

Continue reading “Static Recompilation Brings New Life To N64 Games”

The Latest Advancements In Portable N64 Modding

[Chris Downing] has been in the mod scene a long time, and his 5th GeN64 Portable is his most modern portable Nintendo 64 yet. The new build has an improved form factor, makes smart use of 3D printing and CNC cutting, efficiently uses PCBs to reduce wiring, and incorporates a battery level indicator. That last feature is a real quality of life improvement, nicely complementing the ability to charge over USB-C.

What’s interesting about builds like this is that it’s all about the execution. The basic parts required to mod a classic games console into a portable unit are pretty well understood, and off-the-shelf modules like button assemblies exist to make the job far easier than it was back in the day when all had to be done from scratch. We’ve admired [Chris Downing]’s previous builds, and what differentiates one mod from another really comes down to layout and execution, and that’s where the 5th GeN64 Portable shines. Continue reading “The Latest Advancements In Portable N64 Modding”

A Nintendo 64 controller with a USB adapter

Play N64 Games The Right Way With This Classic Controller Adapter

Game consoles typically support a limited number of input devices, meaning that console games are often completely optimized for the default controller supplied with that platform. Nintendo’s tendency to completely reinvent their controllers pretty much every generation can therefore become a little irritating, especially when they also enable their newer consoles to play games from their back catalog. So when [Robson Couto] found that using the Switch’s Joy-Cons was a bit awkward for playing emulated Nintendo 64 games, he decided to figure out how to connect real N64 controllers to a Nintendo Switch.

While you can buy modern N64-style controllers for the Switch, even straight from Nintendo themselves, [Robson] thought it would be way more interesting to reuse an old controller and implement the translation step from scratch. In the video (embedded below) he takes a deep dive into all the timing details of the N64 controller protocol, which is basically a 1-wire setup, and explains how to use an STM32F411 BlackPill board to read out the controller’s buttons and joystick.

Next, he explores how to map the resulting data to the USB HID protocol used by the Switch. Most of the buttons have a clear one-on-one mapping, but since the “minus”, “capture” and “home” buttons are missing on the N64 controller, he chose to map these to button combinations unlikely to be used during regular gameplay. [Robson] also ran into the common issue of the analog joystick having a poorly-defined maximum range, for which he added a rudimentary auto-calibration feature.

Finally, he designed and 3D-printed a neat enclosure for his system with an N64 controller port on one side and a USB port on the other. By 3D-printing the whole thing he also avoided having to either source the non-standard connector or permanently modify his hardware. The end result of [Robson]’s project is an unobtrusive gadget that connects classic controllers to modern hardware – but of course, the reverse process is very much possible, too. If you want, you can even play N64 games with a mouse and keyboard.

Continue reading “Play N64 Games The Right Way With This Classic Controller Adapter”

Realtime Shadows On N64 Hardware

Although the Nintendo 64 console has in the minds of many been relegated to the era of ‘firmly obsolete graphics’, since its graphic processor’s (GPU’s) lineage traces directly to the best which SGI had to offer in the 1990s, it too supports a range of modern features, including dynamic shadows. In a simple demo, [lambertjamesd] demonstrates how this feature is used.

As can be seen in the demonstration video (linked after the break), this demo features a single dynamic light, which casts a shadow below the central object in the scene, with a monkey object floating around that casts its own shadow (rendered into an auxiliary frame buffer). This auxiliary buffer is then blended into the main buffer, as explained by [ItzWarty] over at /r/programming on Reddit.

This effectively means that the main scene uses a shadow volume, which was used extensively with Doom 3. The primary reasons for why the N64 didn’t use shadow volumes all over the place was due to the limitations this places on the shadow caster (objects) in the scene, such as the need to be convex, and overlap is likely to lead to artifacts and glitches.

Doom 3 would fix this with the use of a stencil buffer that would further refine the basic dynamic lighting support on the N64, which ultimately would lead to the fancy video game graphics we have today. And which no doubt will look properly obsolete in another decade again, as usual.

Continue reading “Realtime Shadows On N64 Hardware”

A Nintendo 64 console with modern hardware internals

N64 Mini PC Conversion Includes All The Trimmings

We’ve seen quite a few retro gaming consoles physically modded to house modern emulation hardware, but the NUC-64 by [RetroModder] stands out as one of the most impressive Nintendo 64 guttings that we’ve seen to date.

Observed from the front, the NUC-64 almost resembles a stock Nintendo console. The project’s name is printed across the vestigial cartridge slot, and two suspiciously modern wireless networking antennas can be seen poking out from the back. The console’s modifications are fully revealed when looking at it from the rear – gone is the power brick socket, which now houses the I/O for the replacement motherboard. A custom 3D printed I/O shield keeps everything looking neat and tidy.

Internally, the new hardware is no slouch. The Intel NUC is a small-form-factor PC, and this miniature battlestation sports an 1.6GHz Intel N3700 Pentium processor, 4GB of DDR3 RAM, WiFi/Bluetooth connectivity and an M.2 SSD. This hardware runs circles around the original Nintendo 64, and is more than capable of emulating games from that system.

Most total conversions would call it a day here, however [RetroModder] has taken it a step further by producing a custom PCB that neatly ties together the console’s front I/O. Most importantly, two Mayflash N64-to-USB converters means that your favorite 1990s games can be enjoyed with the original controllers. The original power LED and reset switch are present, as is the sliding power switch which retains its original purpose, thanks to a simple 555 circuit that sends the expected power-on and power-off signals to the motherboard with each slide of the power switch. Additionally, a system of 3D printed mounts and brackets keeps everything secure inside the case.

All the build details can be found here. The NUC-64 follows on from last month’s GamecubePC. The build quality and attention to detail makes this conversion rather special, and it’s clear that a lot of care and planning was taken to pull this off. Hopefully the original N64 hardware can be repurposed as well, perhaps as a new portable console?

Continue reading “N64 Mini PC Conversion Includes All The Trimmings”

Mouse And Keyboard Controls On The N64

The Nintendo 64 was one of the consoles that properly heralded in the era of 3D gaming. However, its controller is of a design we wouldn’t consider ideal today. For the FPS games that were so popular on the N64, a mouse and keyboard could do much better. [The Hypocaust] set out to make it happen.

The N64 polls the controller and receives button and analog stick data in return. Four bytes are sent by the controller, with 14 bits covering the buttons and 8 bits covering the horizontal and vertical axes of the analog stick, respectively. Thus, if keyboard presses and mouse movements from a PC could be pumped to a microcontroller which reformatted the data into signals the N64 could understand, everything would work nicely.

Initial attempts to get things working with code borrowed from a [James Read] faced an issue of a 3-second lag between keypresses and actions reaching the N64. Upgrading to a faster microcontroller only made things worse, taking the lag out to a full 16 seconds. The problem? The code borrowed for the project was storing keypresses in a buffer that was creating the delay. Once eliminated, the system worked.

An installer for the software is available, but you’ll have to be comfortable with running a strange executable if you want to use it. We’ve seen similar work before too, such as the USB64 project. Video after the break.

Continue reading “Mouse And Keyboard Controls On The N64”

Turning GameCube & N64 Pads Into MIDI Controllers

It’s fair to say that the Nintendo 64 and GameCube both had the most unique controllers of their respective console generations. The latter’s gamepads are still in high demand today as the Smash Bros. community continues to favor its traditional control scheme. However, both controllers can easily be repurposed for musical means, thanks to work by [po8aster].

The project comes in two forms – the GC MIDI Controller and the N64 MIDI Controller, respectively. Each uses an Arduino Pro Micro to run the show, a logic level converter, and [NicoHood’s] Nintendo library to communicate with the controllers. From there, controller inputs are mapped to MIDI signals, and pumped out over traditional or USB MIDI.

Both versions come complete with a synth mode and drum mode, in order to allow the user to effectively play melodies or percussion. There’s also a special mapping for playing drums using the Donkey Konga Bongo controller with the GameCube version. For those eager to buy a working unit rather than building their own, they’re available for purchase on [po8aster’s] website.

It’s a fun repurposing of video game hardware to musical ends, and we’re sure there’s a few chiptune bands out there that would love to perform with such a setup. We’ve seen other great MIDI hacks on Nintendo hardware before, from the circuit-bent SNES visualizer to the MIDI synthesizer Game Boy Advance. Video after the break.

Continue reading “Turning GameCube & N64 Pads Into MIDI Controllers”