Hackaday Podcast Episode 324: Ribbon Microphone From A Gumstick, Texture From A Virtual Log, And A Robot Arm From PVC

This week, Hackaday’s Elliot Williams and Kristina Panos joined forces to bring you the latest news, mystery sound, and of course, a big bunch of hacks from the previous week.

In Hackaday news, the 2025 Pet Hacks Contest rolls on, but only for a short time longer. You have until Tuesday, June 10th to show us what you’ve got, so head over to Hackaday.IO and get started now! In other news, check out what adaptive optics can do when it comes to capturing pictures of the Sun. In other, other news, there won’t be a Podcast next week as Elliot is on vacation.

On What’s That Sound, Kristina failed once again, but four of you guessed correctly. Congratulations to [ToyoKogyo12aTurbo] who fared better and wins a limited edition Hackaday Podcast t-shirt!

After that, it’s on to the hacks and such, beginning with a largely-printed 6-DOF robot arm. We take a look at a bunch of awesome 3D prints like guitars and skateboards, take a look at some pet hacks, and discuss brick layers in orcaslicer. Finally, we talk a lot about keyboards, especially the quickly-evaporating Blackberry keyboards and why they’re disappearing.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download in DRM-free MP3 and savor at your leisure.

Continue reading “Hackaday Podcast Episode 324: Ribbon Microphone From A Gumstick, Texture From A Virtual Log, And A Robot Arm From PVC”

Learn About Robot Arms By Building Pedro 2.0

Whether you’re a kid or a kid at heart, learning about science and engineering can be a lot more fun if it’s practical. You could sit around learning about motors and control theory, or you could build a robot arm and play with it. If the latter sounds like your bag of hammers, you might like Pedro 2.0.

Pedro 2.0 is a simple 3D-printable robot arm intended for STEAM education. If you’re new to that acronym, it basically refers to the combination of artistic skills with education around science, technology, engineering and mathematics.

The build relies on components that are readily available pretty much around the world—SG90 servo motors, ball bearings, and an Arduino running the show. There’s also an NRF24L01 module for wireless remote control. All the rest of the major mechanical parts can be whipped up on a 3D printer, and you don’t need a particularly special one, either. Any old FDM machine should do the job just fine if it’s calibrated properly.

If you fancy dipping your toes in the world of robot arms, this is a really easy starting point that will teach you a lot along the way. From there, you can delve into more advanced designs, or even consider constructing your own tentacles. The world really is your octopus oyster.

Robot Arm Gives Kids The Roller Coaster Ride Of Their Lives

Unfortunately, [Dave Niewinski]’s kids are still too little to go on a real roller coaster. But they’re certainly big enough to be tossed around by this giant robot arm roller coaster simulator.

As to the question of why [Dave] has a Kuka KR 150 robot in his house, we prefer to leave that unasked and move forward. And apparently, this isn’t his first attempt at using the industrial robot as a motion simulator. That attempt revealed a few structural problems with the attachment between the rider’s chair and the robot’s wrist. After redesigning the frame with stouter metal and adding a small form-factor gaming PC and a curved monitor in front of the seat, [Dave] was ready to figure out how to make the arm simulate the motions of a roller coaster.

Now, if you ever thought the world would be a better place if only we had a roller coaster database complete with 4k 60 fps video captured from real coasters, you’re in luck. CoasterStats not only exists, but it also includes six-axis accelerometer data from real rides of coasters across Europe. That gave [Dave] the raw data he needed, but getting it translated into robot motions that simulate the feeling of the ride was a bit tricky. [Dave] goes into the physics of it all in the video below, but suffice it to say that the result is pretty cool.

More after the break.

Continue reading “Robot Arm Gives Kids The Roller Coaster Ride Of Their Lives”

Gesture-Controlled Robot Arm Is A Nifty Educational Build

Traditionally, robot arms have been controlled either by joysticks, buttons, or very carefully programmed routines. However, for [Narongporn Laosrisin’s] homebrew build, they decided to go with gesture control instead.

The MeArm robotic arm is built using laser cut acrylic parts, and can be had in a kit if so desired. It features four servo motors, charged with rotating the arm’s base, pushing the arm forwards and backwards, up and down, and actuating its gripper. The servos are under the command of a micro:bit microcontroller board, which itself receives signals from a second micro:bit which is strapped to the human wishing to control the arm. The second micro:bit detects gestures with its accelerometer, and then sends the relevant commands to the robotic arm’s micro:bit over its built-in radio link. The arm controller then commands the servos to execute the maneuver.

It may be a small robotic arm that doesn’t have the capacity to lift much, but that’s not the point. This project is a great way to teach students how to program microcontrollers, work with sensor inputs, and just generally how to solve engineering puzzles. To that end, it looks like [Narongporn] has a great project on hand for teaching their students. Video after the break.

Continue reading “Gesture-Controlled Robot Arm Is A Nifty Educational Build”

MeArm 3.0: The Pocket-Sized Robot Arm

We all might dream of having an industrial robot arm at our disposal, complete with working controller that doesn’t need constant maintenance and replacement parts, and which is able to help us with other projects with only a minimum of coding or instruction. That’s a pipe dream for most of us, as without a large space, sufficient funding, or unlimited amounts of troubleshooting time we’ll almost always have to look for something smaller and simpler. Perhaps something even as small as this pocket-sized robotic arm.

This isn’t actually the first time we’ve seen the MeArm; the small robot has been around since 2014 and has undergone a number of revisions and upgrades. Even this revision has been out for a little while now but this latest in the series is now available with a number of improvements over the older models. The assembly time required has been reduced from two hours to about 30 minutes and the hardware has even been fully open-sourced as well which allows virtually anyone with the prerequisite tools to build this tiny robot for whatever they happen to need it for, due to its very permissive licensing.

The linked Instructable goes into every detail needed for building the robot as well as documenting all of the parts needed, although you will need access to some specialty tools to make a lot of them. We also featured a Friday Hack Chat about these robots back in 2018 that has some interesting details about these robots in it, and although this is a relatively small robot in the grand scheme of things it’s always possible to upgrade to something larger in the future.

Continue reading “MeArm 3.0: The Pocket-Sized Robot Arm”

Arctos Robotics: Build A Robot Arm Out Of 3D Printer Spares?

ARCTOS is a 6-DOF robot arm based upon 3D printed mechanics running a modified version of GRBL firmware. Let’s get this straight now, the firmware is open source, but the hardware plans are a paid download, but for less than forty euros, we reckon the investment would be well worth it, judging from the quality of the build instructions and the software support already in place. Continue reading “Arctos Robotics: Build A Robot Arm Out Of 3D Printer Spares?”

$60 Robot Arm Is Compact

Thanks to 3D printing and inexpensive controllers, a robot arm doesn’t need to break the bank anymore. Case in point? [Build Some Stuff] did a good-looking compact arm with servos for under $60. The arm uses an interesting control mechanism, too.

Instead of the traditional joystick, the arm has a miniature arm with potentiometers at each joint instead of motors. By moving the model arm to different positions, the main arm will mimic your motions. It is similar to old control systems using a synchro (sometimes called a selsyn), but uses potentiometers and servo motors.

Continue reading “$60 Robot Arm Is Compact”