Robots Want The Jobs You Can’t Do

There’s something ominous about robots taking over jobs that humans are suited to do. Maybe you don’t want a job turning a wrench or pushing a broom, but someone does. But then there are the jobs no one wants to do or physically can’t do. Robots fighting fires, disarming bombs, or cleaning up nuclear reactors is something most people will support. But can you climb through a water pipe from the inside? No? There are robots that are available from several commercial companies and others from university researchers from multiple continents.

If you think about it, it makes sense. For years, companies that deal with pipes would shoot large slugs, or “pigs”, through the pipeline to scrape them clean. Eventually, they festooned some pigs with sensors, and thus was born the smart pig. But now that it is possible to make tiny robots, why not send them inside the pipe to inspect and repair?

Continue reading “Robots Want The Jobs You Can’t Do”

Robot Dinosaur YOLOs Colors And Shapes For Kids

YOLO can mean many things, but in the context of [be_riddickulous]’s AI Talking Robot Dinosaur it refers to the “You Only Look Once” YOLOv11 object-detection algorithm by Ultralytics, the method by which this adorable dino recognizes colors and shapes to teach them to children.

If you’re new to using YOLO or object recognition more generally, [be_riddiculous]’s tutorial is not a bad place to get started. She goes through how many images you’ll need and what types to get the shape-and-color recognition needed for this project, as well as how to annotate them and train the model, either locally or in the cloud.

The project itself is an adorable paper-mache dinosaur with a servo-actuated mouth hiding some LEDs and a Raspberry Pi camera module to provide images. In operation, the dinosaur “talks” to children using pre-recorded voice lines, inviting them to play a game and put a specific shape, or shape of a specific color (or both) in its mouth. Then the aforementioned object detection (running on a laptop) goes “YOLO” and identifies the shape so the toy can provide feedback on the child’s choice via a speaker in the belly of the beast.

The link to the game code is currently not valid, but it looks like they used PyGame for the audio output code. A servo motor controls the mouth, but without that code it’s not entirely clear to us what it’s doing. We expect by the time you read this there’s good odds [be_riddickulous] will have fixed that link and you can see for yourself.

The only thing that holds this back from being a great toy to put in every Kindergarten class is the need to have a laptop close by to plug the webcam into. A Raspberry Pi 5 ought to have the horsepower to run YOLOv11, so with a little extra effort the whole thing could be standalone — there might even be room in there for batteries.We’ve had other hacks aimed at little ones, like a kid-friendly computer to relive the glory days of the school computer lab or one of the many iterations of the RFID jukebox idea. If you want to wow the kiddos with AI, perhaps take a look at this talking Santa plush.

Got a cool project, AI, kid-related, or otherwise? Don’t forget to toss us a tip!

3D Pen Used To Build Cleaning Robot That Picks Up Socks

Your average 3D printer is just a nozzle shooting out hot  plastic while being moved around by a precise robotic mechanism. There’s nothing stopping you replacing the robot and moving around the plastic-squirting nozzle yourself. That’s precisely what [3D Sanago] did to produce this cute little robot.

The beginning of the video sets the tone. “First we create the base that will become the robot vacuum’s body,” explains [3D Sanago]. “I quickly and precisely make a 15 x 15 cm square almost as if I were a 3D printer.” It’s tedious and tiring to move the 3D printing pen through the motions to build simple parts, but that’s the whole gimmick here. What’s wild is how good the results are. With the right post-processing techniques using an iron, [3D Sanago] is able to produce quite attractive plastic parts that almost justify the huge time investment.

The robot itself works in a fairly straightforward fashion. It’s got four gear motors driving four omniwheels, which let it pan around in all directions with ease. They’re under command of an Arduino Uno paired with a multi-channel motor driver board. The robot also has a servo-controlled arm for moving small objects. The robot lacks autonomy. Instead, [3D Sanago] gave it a wireless module so it could be commanded with a PS4 controller. Despite being referred to as a “robot vacuum,” it’s more of a general “cleaning robot” since it only has an arm to move objects, with no actual vacuum hardware. It’s prime use? Picking up socks.

We’ve seen [3D Sanago]’s fine work before, too. Video after the break.

Continue reading “3D Pen Used To Build Cleaning Robot That Picks Up Socks”

Hackaday Podcast Episode 324: Ribbon Microphone From A Gumstick, Texture From A Virtual Log, And A Robot Arm From PVC

This week, Hackaday’s Elliot Williams and Kristina Panos joined forces to bring you the latest news, mystery sound, and of course, a big bunch of hacks from the previous week.

In Hackaday news, the 2025 Pet Hacks Contest rolls on, but only for a short time longer. You have until Tuesday, June 10th to show us what you’ve got, so head over to Hackaday.IO and get started now! In other news, check out what adaptive optics can do when it comes to capturing pictures of the Sun. In other, other news, there won’t be a Podcast next week as Elliot is on vacation.

On What’s That Sound, Kristina failed once again, but four of you guessed correctly. Congratulations to [ToyoKogyo12aTurbo] who fared better and wins a limited edition Hackaday Podcast t-shirt!

After that, it’s on to the hacks and such, beginning with a largely-printed 6-DOF robot arm. We take a look at a bunch of awesome 3D prints like guitars and skateboards, take a look at some pet hacks, and discuss brick layers in orcaslicer. Finally, we talk a lot about keyboards, especially the quickly-evaporating Blackberry keyboards and why they’re disappearing.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download in DRM-free MP3 and savor at your leisure.

Continue reading “Hackaday Podcast Episode 324: Ribbon Microphone From A Gumstick, Texture From A Virtual Log, And A Robot Arm From PVC”

ManiPylator focusing its laser pointer at a page.

Simulation And Motion Planning For 6DOF Robotic Arm

[Leo Goldstien] recently got in touch to let us know about a fascinating update he posted on the Hackaday.io page for ManiPylator — his 3D printed Six degrees of freedom, or 6DOF robotic arm.

This latest installment gives us a glimpse at what’s involved for command and control of such a device, as what goes into simulation and testing. Much of the requisite mathematics is introduced, along with a long list of links to further reading. The whole solution is based entirely on free and open source (FOSS) software, in fact a giant stack of such software including planning and simulation software on top of glue like MQTT message queues.

The practical exercise for this installment was to have the arm trace out the shape of a heart, given as a mathematical equation expressed in Python code, and it fared quite well. Measurements were taken! Science was done!

We last brought you word about this project in October of 2024. Since then, the project name has changed from “ManiPilator” to “ManiPylator”. Originally the name was a reference to the Raspberry Pi, but now the focus is on the Python programming language. But all the bot’s best friends just call him “Manny”.

If you want to get started with your own 6DOF robotic arm, [Leo] has traced out a path for you to follow. We’d love to hear about what you come up with!

Continue reading “Simulation And Motion Planning For 6DOF Robotic Arm”

Wire-frame image of gearbox, setup as a differential

Roller Gearbox Allows For New Angles In Robotics

DIY mechatronics always has some unique challenges when relying on simple tools. 3D printing enables some great abilities but high precision gearboxes are still a difficult problem for many. Answering this problem, [Sergei Mishin] has developed a very interesting gearbox solution based on a research paper looking into simple rollers instead of traditional gears. The unique attributes of the design come from the ability to have a compact angled gearbox similar to a bevel gearbox.

Multiple rollers rest on a simple shaft allowing each roller to have independent rotation. This is important because having a circular crown gear for angled transmission creates different rotation speeds. In [Sergei]’s testing, he found that his example gearbox could withstand 9 Nm with the actual adapter breaking before the gearbox showing decent strength.

Continue reading “Roller Gearbox Allows For New Angles In Robotics”

Adorable Robot Steals The Show

An ongoing refrain with modern movies is “Why is all of this CG?”– sometimes, it seems like practical effects are simultaneously a dying art, while at the same time modern technology lets them rise to new hights. [Davis Dewitt] proves that second statement with his RC movie star “robot” for an upcoming feature film.

The video takes us through the design process, including what it’s like to work with studio concept artists. As for the robot, it’s controlled by an Arduino Nano, lots of servos, and a COTS airplane R/C controller, all powered by li-po batteries. This is inside an artfully weathered and painted 3D printed body. Apparently weathering is important to make the character look like a well-loved ‘good guy’. (Shiny is evil, who knew?) Hats off to [Davis] for replicating that weathering for an identical ‘stunt double’.

Check out the video below for all the deets, or you can watch to see if “The Lightning Code” is coming to a theater near you. If you’re into films, this isn’t the first hack [Davis] has made for the silver screen. If you prefer “real” hacks to props, his Soviet-Era Nixie clock would look great on any desk. Thanks to [Davis] for letting us know about this project via the tips line.

Continue reading “Adorable Robot Steals The Show”