Kirby Sucks, Literally

What’s common between one of the most legendary video game characters of all time and a fume extractor ? They both suck. [Chris Borge] is not an electronics hobbyist and only does some occasional soldering. This made his regular fume extractor bulky and inconvenient to position where needed. What could serve him better would be a small extractor that could be attached to a clip or an arm on his helping hand accessory. Being unable to find an off-the-shelf product or a suitable 3d printed design that he liked, he built the Kirby 40mm Fume Extractor.

His initial idea was for a practical design more suited to his specific needs. But somewhere along the way, the thought of a Kirby fan popped up in his head, and it was too good an idea to pass up. Several Kirby fan designs already existed, but none that satisfied [Chris]. Getting from paper sketch to CAD model required quite an effort but the result was worth the trouble, and the design was quite faithful to the original character features. The main body consists of two halves that screw together, and an outlet grill at the back. The body has space for a 40 mm fan and a 10 mm charcoal filter in the front. The wires come out the back, and connect directly to a power supply barrel jack. Arms and eyes are separate pieces that get glued to the body. The feet glue to an intermediate piece, which slides in a dove tail grove in the body. This allows Kirby to be tilted at the right position for optimum smoke extraction.

While Kirby served the purpose, it still didn’t meet the original requirement of attaching to a clip or arm on the helping hand. So [Chris] quickly designed a revised, no-frills model which is essentially a square housing to hold the fan and the filter. It has a flexible stand so it can be placed on a bench. And it can also be attached to the helping hand, making it a more utilitarian design. This design has the charcoal filter behind the fan, but he also has a third design for folks who prefer to have the filter at the front.

He now had a more useful, practical fume extractor, but he couldn’t bring himself to discard his original Kirby. So he printed a couple more 3D parts so that Kirby could fit the end of his vacuum cleaner hose. Now, Kirby sits on his bench, and helps suck up all the bits and bobs of trash on his workbench. We’re sure Kirby is quite pleased with his new role.

Continue reading “Kirby Sucks, Literally”

A man sits in a chair atop a hexagonal platform. From the platform there are six hydraulically-actuated legs supporting the hexapod above a grassy field. The field is filled with fog, giving the shot a mysterious, otherworldly look.

Megahex Will Give You Robo-Arachnophobia

Some projects start with a relatively simple idea that quickly turns into a bit of a nightmare when you get to the actual implementation. [Hacksmith Industries] found this to be the case when they decided to build a giant rideable hexapod, Megahex. [YouTube]

After seeing a video of a small excavator that could move itself small distances with its bucket, the team thought they could simply weld six of them together and hook them to a controller. What started as a three month project quickly spiraled into a year and a half of incremental improvements that gave them just enough hope to keep going forward. Given how many parts had to be swapped out before they got the mech walking, one might be tempted to call this Theseus’ Hexapod.

Despite all the issues getting to the final product, the Megahex is an impressive build. Forward motion and rotation on something with legs this massive is a truly impressive feat. Does the machine last long in this workable, epic state? Spoilers: no. But, the crew learned a lot and sometimes that’s still a good outcome from a project.

If you’re looking for more hexapod fun, checkout Stompy, another rideable hexapod, or Megapod, a significantly smaller 3D-printed machine.

Continue reading “Megahex Will Give You Robo-Arachnophobia”

From A 6502 Breadboard Computer To Lode Runner And Beyond

As disruptive and generally unpleasant as the pandemic lockdowns of 2020 were, they often ended up being a catalyst for significant personal growth. That was often literal growth, thanks to stress eating, but others, such as [Eric Badger], used the time to add skills to his repertoire and build a breadboard 6502 computer and so much more.

For those of you looking for a single endpoint to this story, we’re sorry to disappoint — this isn’t really one of those stories. Rather, it’s a tale of starting as a hardware newbie with a [Ben Eater] 6502 breadboard computer kit, and taking it much, much beyond. Once the breadboard computer kit was assembled, [Eric] was hooked, and found himself relentlessly expanding it. At some point, he decided to get the classic game Lode Runner going on his computer; this led to a couple of iterations of video cards, including a foray away from the breadboards and into PCB design. That led to a 6502 emulator build, and a side quest of a Raspberry Pi Pico Lode Runner appliance. This naturally led [Eric] to dip a toe into the world of 3D printing, because why not?

Honestly, we lost track of the number of new skills [Eric] managed to add to his toolkit in this video, and we’re sure this isn’t even a final accounting — there’s got to be something he missed. It’s great stuff, though, and quite inspirational — there’s no telling where you’ll end up when you start messing around with hardware hacking.

Continue reading “From A 6502 Breadboard Computer To Lode Runner And Beyond”

Supercon 2022: All Aboard The SS MAPR With Sherry Chen

How do you figure out what is in a moving body of water over a mile wide? For those in charge of assessing the water quality of the Delaware river, this is a real problem. Collecting the data required to evaluate the water quality was expensive and time-consuming, taking over six years. Even then, the data was relatively sparse, with just a few water quality stations and only one surface sample for every six miles of river.

Sherry Chen, Quinn Wu, Vanessa Howell, Eunice Lee, Mia Mansour, and Frank Fan teamed up to create a solution, and the SS MAPR was the result. At Hackaday Supercon 2022, Sherry outlined the mission, why it was necessary, and their journey toward an autonomous robot boat. What follows is a fantastic guide and story of a massive project coming together. There are plans, evaluations, and tests for each component.

Sherry and the team first started by defining what was needed. It needed to be cheap, easy to use, and able to sample from various depths in a well-confined bounding box. It needed to run for four hours, be operated by a single person, and take ten samples across a 1-mile (2 km) section of the river. Some of the commercial solutions were evaluated, but they found none of them met the requirements, even ignoring their high costs. They selected a multi-hull style boat with off-the-shelf pontoons for stability and cost reasons.
Continue reading “Supercon 2022: All Aboard The SS MAPR With Sherry Chen”

Several people at a museum exhibit about magnetism

Hands-On Museum Exhibit Brings Electromagnetism To Life

Magnets, how do they work? Although the quantum mechanics behind ferromagnetism are by no means easy, a few simple experiments can give you a good grasp of how magnets attract and repel each other, and show how they interact with electric phenomena. [Niklas Roy] built an exhibit for the Technorama science museum in Switzerland that packs a bunch of such electromagnetic experiments in a single package, appropriately called the Visitors Magnet.

The exhibit consists of a big magnet-shaped enclosure that contains a variety of demonstrators that are all powered by magnets. They range from simple compasses to clever magnetic devices we find in the world around us: flip-dot displays for instance, on which you can toggle the pixels by passing a magnet over them. You can even visualize magnetic field lines by using magnetic viewing film, or turn varying fields into audio through a modified telephone receiver.

Another classic demonstrator of electromagnetism is a color CRT monitor, which here displays a video feed coming from a camera hanging directly overhead. Passing a magnet along the screen makes all kind of hypnotizing patterns and colors, amplified even more by the video feedback loop. [Niklas] also modified the picture tube with an additional coil, connected to a hand-cranked generator: this allows visitors to rotate the image on the screen by generating an AC current, neatly demonstrating the interaction between electricity and magnetism.

The Visitors Magnet is a treasure trove of big and small experiments, which might not all withstand years of use by museum guests. But that’s fine — [Niklas] designed the exhibit to be easy to maintain and repair, and expects the museum to replace worn-out experiments now and then to keep the experience fresh. He knows a thing or two about designing engaging museum exhibits, with a portfolio that includes vector image generators, graffiti robots and a huge mechanical contraption that plays musical instruments.

Continue reading “Hands-On Museum Exhibit Brings Electromagnetism To Life”

All About USB-C: High-Speed Interfaces

One amazing thing about USB-C is its high-speed capabilities. The pinout gives you four high-speed differential pairs and a few more lower-speed pairs, which let you pump giant amounts of data through a connector smaller than a cent coin. Not all devices take advantage of this capability, and they’re not required to – USB-C is designed to be accessible for every portable device under the sun. When you have a device with high-speed needs exposed through USB-C, however, it’s glorious just how much USB-C can give you, and how well it can work.

The ability to get a high-speed interface out of USB-C is called an Alternate Mode, “altmode” for short. The three altmodes you can encounter nowadays are USB3, DisplayPort and Thunderbolt, there’s a few that have faded into obscurity like HDMI and VirtualLink, and some are up and coming like USB4. Most altmodes require digital USB-C communication, using a certain kind of messages over the PD channel. That said, not all of them do – the USB3 is the simplest one. Let’s go through what makes an altmode tick. Continue reading “All About USB-C: High-Speed Interfaces”

The First Afghan Sports Car Has An Engine You Shouldn’t Mock

In the news today, Afghanistan has made its first sports car, and it’s a sleek and low-slung model with a throaty exhaust note that would get a second look on the Autobahn just as much as it does on the streets of Kabul. Making a modern sports car is an impressive achievement no matter where you do it, but it wouldn’t be something we’d share with you were it not for how the story is being reported. The general tone of Western reporting is focused not upon the car itself, but instead poking fun of it for using a Toyota engine also found in a Corolla.

Anyone who grew up during the Cold War will remember the rhetoric of the era with respect to technology. To paraphrase a little, our planes or rockets were based on the finest and latest high technology, we were told, while theirs were held together with string and sealing wax from the 1940s. This neglected the fairly obvious fact that Soviet probes were visiting all the planets, something they must have had some pretty good tech at their disposal to achieve. This was then explained as the product of their having stolen all our super-advanced Western tech, something we now know that our lot weren’t averse to either when the opportunity arose.

It’s this which is brought to mind by the mirth of the Western commentators at the Afghan car’s supposedly humble engine. It doesn’t matter what you think of the Afghan regime (and there’s plenty there to criticize), the car should be assessed on its merits. After all, it’s hardly as though the engine in question didn’t find its way into more than one sports car that Western commentators might find appealing.