front and back of the Jolly Wrencher SAO

Jolly Wrencher SAO, And How KiCad 6 Made It Easy

If you plan to attend Supercon or some other hacker conference, know that you’re going to get a badge with a SAO (Simple Add-On) connector, a 4-pin or 6-pin connector that you can plug an addon board onto. There’s myriads of SAOs to choose from, and if you ever felt like your choice paralysis wasn’t intense enough, now you have the option of getting a Jolly Wrencher SAO board!

This board gives you an SMD prototyping space, with 1.27mm (0.05″ pitch) pads, suitable for many passive components, ICs and even modules like the ESP32 WROOM. Those pads are diagonally interspersed with ground-fill-connected pads – if you want to bodge something on the spot, you don’t need to pull separate GND wires. Given the Supercon badge specifics, the SAO-standard SDA and SCL pins have RX and TX labels as well. For bonus points, the eyes are transparent, with LED footprints behind them – it’s my first time designing a PCB where the LED shines through the FR4, and I hope that the aesthetics work out!

This design is open with gerber files available for download, so if you thought of making a quick PCB order, I’m giving you one more .zip file to add to it. Otherwise, it’s possible that you will find a Wrencher board lying around at Supercon! Now, I’d like to tell you how KiCad 6 made it super easy to design this PCB – after all, there’s never enough SAOs, and it’s quite likely you’ll want to design your own special SAO, too.

Continue reading “Jolly Wrencher SAO, And How KiCad 6 Made It Easy”

Don’t Miss The Philadelphia Maker Faire This Weekend

For readers in the American Northeast that are looking for something to do this weekend, may we humbly suggest a day trip to attend the 2022 Philadelphia Maker Faire on Saturday, October 15th. After taking the last two years off due to COVID-19, the event has moved to the Independence Seaport Museum for its grand return, and is sure to attract plenty of hackers and makers who are eager to show off their pandemic projects.

Of course, the nature of these events is that you never really know what you’re going to see until you actually get there. But just browsing the list of confirmed projects that will have dedicated tables set up, we can tell there’s some very interesting stuff on tap — from fighting robots and hologram printers, to plasma physics and electric hydrofoils. While the deadline to submit projects for official inclusion has long since passed, we can tell you from experience that’s not going to stop folks from showing up with their own gadgets to show off to the captive audience. Especially if they’re of the wearable variety; it’s not really a Maker Faire unless somebody is wearing something that’s blinking.

Olympia and Becuna

Naturally the Faire itself is obviously the main event, but don’t forget that the Independence Seaport Museum itself is worth checking out while you’re there. You can tour the 130-year-old USS Olympia, as well as the USS Becuna, one of the last surviving WWII Balao-class submarines.

While the community might never truly recover from the loss of the flagship Maker Faires in New York and California, we do take some comfort in knowing that smaller regional shows like this one have been growing over the last few several years. They’re not only a great way to connect with like-minded folks in your area, but can help you connect with maker-friendly vendors and organizations which you might otherwise be unaware of.

A streamlined black boiler with a headlight at the tip dwarfs the 5th wheel trailer and secondary trailer it is attached to.

Bringing A Steam Train Back From Extinction

There’s no denying that while railroads have switched to diesel and electric as their primary power sources, there’s a certain allure to the age of steam. With that in mind, a group of Pennsylvania train fans are bringing the alleged fastest steam train back from extinction.

It takes real dedication to build a 428-ton device from scratch, but these rail aficionados seem to have it in spades. Armed only with the original blueprints and a lot of passion, this team has already finished construction of the boiler and nose of the Class T1 replica which is no small feat. This puts the train at approximately 40% complete.

Some changes are planned for the locomotive including a change to fuel oil from coal and replacing the poppet valves prone to failure with camshaft-driven rotary valves. While not original hardware, these changes should make the train more reliable, and bring the world record for the fastest steam locomotive within reach. If the T1 replica can reach the 140 MPH storied of the originals, it will smash the current record of 126 MPH held by a British train, the A4 Mallard, which would be exciting indeed.

Speaking of Pennsylvania and steam, a trip to Scranton is a must for anyone interested in the age of rail.

Hacking Google With Plasma

Google recently made some videos to highlight cybersecurity. The video below is episode three, and it tells an interesting story about the first crash test dummy. However, the really interesting part is the story about a USB plasma globe built to hack into computers. One of the people who built that globe tells the story of its insides in a recent blog post that has a bit more technical detail.

The attack in question was in 2012, when people were starting to get the idea that inserting random USB drives into their computers wasn’t a great idea. However, what harm could there be in a cute little plasma globe that just draws power from the port?

Continue reading “Hacking Google With Plasma”

This ESP32 CAN!

Since modern cars use the CAN bus for so many of their functions, it’s unsurprising that it’s a frequent object of interest for those in our community. Some people go no further than commercial plug-in analysers, while others build their own CAN devices. This is what [Magnus Thomé] has done, with his RejsaCAN microcontroller board.

It’s a small PCB with an onboard CAN interface from an ESP32-S3 and a car-friendly power supply circuit, and perhaps most importantly, it has an auto-shutdown feature to prevent battery drain. Software-wise it’s a blank piece of paper for the user to roll their own application, but since the ESP32 is supported by the Arduino ecosystem, there are libraries that make talking CAN as easy as it can be.

[Magnus] has a list of potential applications for the board, many of which take advantage of the ESP’s wireless capabilities. So far, [Magnus] has hooked it up to an LCD display, but we can see so many other useful things coming out powered by something like this.

You haven’t tried playing with your car’s CAN bus yet? Maybe you should read this to whet your appetite.

Amateur Rocket Aims For The Kármán Line, One Launch At A Time

When it comes to high-powered rocketry, [BPS.space] has the unique distinction of being the first to propulsively land a solid-fueled model rocket. How could he top that? Well, we’re talking about actual rocket science here, and the only way is up! All the way up to the Kármán line: 100 km. How’s he going to get there? That’s the subject of the video below the break.

Getting to space is notoriously difficult because it’s impossible to fully test for the environment in which a rocket will be flying. But there is quite a lot that can be tested, and those tests are the purpose of a rocket that [Joe] at [BPS.space] calls Avalanche. Starting with a known, simple design as a test bed, numerous launches are planned in order to iterate quickly through several launches- three of which are covered just in this video.

The goal with Avalanche isn’t to get to the Kármán line, but to learn the lessons needed to build a far bigger rocket that will. A home-brewed guidance system, a gimballed spin-stabilized 4K camera, and the descent system are among those being tested and perfected.

Of course, you don’t have to be a rocket scientist to have fun with prototyping. Sometimes you just want to 3D print a detonation engine, no matter how long it won’t last. Why not?

Continue reading “Amateur Rocket Aims For The Kármán Line, One Launch At A Time”

Power Loss Recovery Might Make 3D-Printed Blobs

[Geek Detour] had a mystery to solve. A round part he was printing had a distinct pattern of blobs. If you’ve been 3D printing for any length of time, you know that pauses in printing can cause blobs like this. He also showed a perfectly-printed version of the same part and claimed it was from the same printer with the same material and even slicer settings. So what was causing the blobs? You can find the answer in the video below.

As you might guess from the title, however, the issue was the power loss recovery feature built into the printer. While there’s a lot going on in the video, you can break it down to a few items, all of which you can fix in one way or another including the simple fix: turn off power loss recovery.

Continue reading “Power Loss Recovery Might Make 3D-Printed Blobs”