Microwave Motion Detector Notifies Your Smart Phone

Your garden variety motion detector uses IR, but these days, there are fancier technologies for achieving similar goals. If so desired, you can source yourself a microwave-based presence sensor instead. Indeed, like [N-08 Labs], you might like to whip one up into a basic intrusion detection system.

The idea is simple enough—take a RCWL-0516 microwave presence sensor, and set it up to detect motion and warn you when it happens. It’s a simple part to use—it simply drives a 3.3 volt logic output high if it detects someone or something. It basically just emits a microwave signal and detects a change in phase when someone or something—usually something fleshy—is in front of it. [N-08 Labs] simply hooked one up to an IO pin on an ESP8266, with the microcontroller board set up to communicate wirelessly with a Blynk IoT app, which then in turn fires off a smartphone notification that the sensor picked something up. The whole thing is built inside the shell of an AC adapter that provides power and let it easily hide in plain sight.

A project like this doesn’t just have to be for security purposes. You might even just use it to determine when your pet (or a racoon) is using the cat door, or similar. Indeed, we’ve seen great solutions to that particular problem, too. Video after the break.

Continue reading “Microwave Motion Detector Notifies Your Smart Phone”

You’ve Got All Year To Print This Marble Machine Ornament For Your Christmas Tree

Most Christmas ornaments just hang there and look pretty. [Sean Hodgins] decided to whip up something altogether fancier and more mechanical. It’s a real working marble machine that hangs from the tree!

The build is simple enough, beginning with a translucent Christmas ornament shell readily available from most craft stores. Inside, a small motor spins a pinion, which turns a larger gear inside the body. As the larger gear spins, magnets embedded inside pick up steel balls from the base of the ornament and lift them up to the top. As they reach their zenith, they’re plucked off by a scoop, and then they roll down a spiral inside. As for power, [Sean] simply handled that with a couple of wires feeding the motor from a USB power bank. Just about any small battery pack would do fine.

The build is beautiful to watch and to listen to, with a gentle clacking as the balls circulate around. Files are on MakerWorld for the curious. We’ve featured some great Christmas decorations before, too. Video after the break.

Reconstructing 3D Objects With A Tiny Distance Sensor

There are a whole bunch of different ways to create 3D scans of objects these days. Researchers at the [UW Graphics Lab] have demonstrated how to use a small, cheap time-of-flight sensor to generate scans effectively.

Not yet perfect, but the technique does work…

The key is in how time-of-flight sensors work. They shoot out a distinct pulse of light, and then determine how long that pulse takes to bounce back. This allows them to perform a simple ranging calculation to determine how far they are from a surface or object.

However, in truth, these sensors aren’t measuring distance to a single point. They’re measuring the intensity of the received return pulse over time, called the “transient histogram”, and then processing it. If you use the full mathematical information in the histogram, rather than just the range figures, it’s possible to recreate 3D geometry as seen by the sensor, through the use of some neat mathematics and a neural network. It’s all explained in great detail in the research paper.

The technique isn’t perfect; there are some inconsistencies with what it captures and the true geometry of the objects its looking at. Still, the technique is young, and more work could refine its outputs further.

If you don’t mind getting messy, there are other neat scanning techniques out there—like using a camera and some milk.

Continue reading “Reconstructing 3D Objects With A Tiny Distance Sensor”

Water Jets Will Carve Your Pumpkin

Carving pumpkins by hand is hot, sweaty, messy work, and a great way to slice your way into a critical artery. Why not let a water jet do it for you? It’ll be cleaner and more precise to boot, and [Jo_Journey] is here to show us how. 

So sharp!

Obviously, you’ll need a water jet machine, there’s no getting around that. You’ll also still have to do the basic preparation of the pumpkin yourself—cutting a porthole into the top and mucking it out is your job. With that done, you must then mount the pumpkin on two metal rods which will be used to mount it in the water jet machine’s working area.

You can then create a vector file of your design, and use your chosen software to generate the G-code to run the water jet. [Jo_Journey] uses Scribe, and recommends cutting at a speed of around 200 in/min at low pressure. Remember, it’s pumpkin you’re cutting, not high-strength steel.

There is some inaccuracy, of course—your pumpkin’s surface is not a flat plane, after all—but the results are good enough for most Halloween-related purposes. Even despite the geometrical issues, though, [Jo_Journey] shows us that you can get pleasantly sharp edges on your design. That’s very hard to achieve by hand!

We do love a good holiday hack around these parts, even if it’s out of season. If you’ve been cooking up your own pumpkinous plans, don’t hesitate to let us know! Earlier is sometimes better—after all, who has time to hack together a project if you’ve just read about it on October 29?

Add A Little WOPR To Your Server Rack

Like so many of us, [aforsberg] found themselves fascinated with the WOPR computer from WarGames — something about all those blinking LEDs must speak to nerds on some subconscious level. But rather than admire the light show from afar, they decided to recreate it at a scale suitable for a 1U server rack.

So what goes into this WOPR display? In this case, the recipe simply calls for three MAX7219 dot matrix LED modules and a Raspberry Pi Pico, although you could swap that out for your favorite microcontroller if you wish. You should probably stick with something that at least runs MicroPython though, or else you won’t be able to use the included Python code to mimic the light patterns seen in the film.

What we like most about this project is how simple and inexpensive it is to recreate. There’s no custom PCB, and all the parts are mass produced enough that the economies of scale have made them comically cheap. Even at Amazon prices, you’re looking at around $50 USD in parts, and quite a bit less if you’ve got the patience to order everything through AliExpress.

Critics will note that, in its current state, this display just shows gibberish (admittedly stylish gibberish, but still). But as we’ve seen with similar projects, that’s simply a matter of software.

Pulsed Deposition Points A Different Path To DIY Semiconductors

While not impossible, replicating the machines and processes of a modern semiconductor fab is a pretty steep climb for the home gamer. Sure, we’ve seen it done, but nanoscale photolithography is a demanding process that discourages the DIYer at every turn. So if you want to make semiconductors at home, it might be best to change the rules a little and give something like this pulsed laser deposition prototyping apparatus a try.

Rather than building up a semiconductor by depositing layers of material onto a silicon substrate and selectively etching features into them with photolithography, [Sebastián Elgueta]’s chips will be made by adding materials in their final shape, with no etching required. The heart of the process is a multi-material pulsed laser deposition chamber, which uses an Nd:YAG laser to ablate one of six materials held on a rotating turret, creating a plasma that can be deposited onto a silicon substrate. Layers can either be a single material or, with the turret rapidly switched between different targets, a mix of multiple materials. The chamber is also equipped with valves for admitting different gases, such as oxygen when insulating layers of metal oxides need to be deposited. To create features, a pattern etched into a continuous web of aluminum foil by a second laser is used as a mask. When a new mask is needed, a fresh area of the foil is rolled into position over the substrate; this keeps the patterns in perfect alignment.

We’ve noticed regular updates on this project, so it’s under active development. [Sebastián]’s most recent improvements to the setup have involved adding electronics inside the chamber, including a resistive heater to warm the substrate before deposition and a quartz crystal microbalance to measure the amount of material being deposited. We’re eager to see what else he comes up with, especially when those first chips roll off the line. Until then, we’ll just have to look back at some of [Sam Zeloof]’s DIY semiconductors.

The US Military’s Unsecured UFO Satellites And Their Use By Russia

Something that you generally don’t expect as a North-America-based enthusiast, is to listen in on Russian military communications during their war in Ukraine via WebSDR, or that these communications would be passing through US military satellites that are happy to just broadcast anything. Yet that’s the situation that the Saveitforparts YouTube channel recently described. As it turns out, there is a gaggle of UFOs up there, as the US DoD lovingly calls them.

Between 1979 and 1989 eight FLTSATCOM launches took place, with FLTSATCOM 7 and 8 still operating today. They were later joined by their successor UHF Follow-On (UFO) with 11 launches between 1993 and 2003. All of these operate in the UHF spectrum, with some UFO satellites also covering other bands. Their goal is to provide communication for the military’s forces, with these satellites for the most part acting as simple repeaters. Over time non-military parties learned to use these satellites too, even if it’s technically illegal in many jurisdictions.

As described in the video, if you listen in on WebSDR streams from Ukraine, you can not only find encrypted military comms, but also unencrypted Russian radio traffic. It seems that in lieu of being provided with proper (encrypted) radio systems, Russian forces are using these US military satellites for communication much like how US (and NATO) forces would have. This is reminiscent of how Russian troops were caught using Discord via Starlink for communication, before Russian command shutdown Discord.

Continue reading “The US Military’s Unsecured UFO Satellites And Their Use By Russia”