Is 3D Printing Up To A Turntable?

Thanks to a feature by Prusament because it uses their filament, we’ve been interested to read about the SongBird turntable from the British outfit Frame Theory (Note: at time of writing, they have an expired certificate). It’s a commercial product with an interesting twist for the Hi-Fi business: buy the completed turntable or buy a kit of parts and print the rest yourself.

We’re always interested to see new things here at Hackaday but we’re not in the business of promoting commercial products without a tech angle. This turntable has us interested then not because it happens to be 3D printed but because it’s instantly raised our curiosity over how suitable 3D printing is as a medium for a high quality audio component. Without descending into audiophile silliness we cannot overstate the effect that rigidity and mass of turntable components has on its audio quality. Take a look at this one we featured in the past for an extreme example.

So looking more closely at the design, we find that the chassis is aluminium, which makes sense given its visibly thin construction. Close examination of the photos on their site also reveals the tonearm to be made of carbon fibre tube, so it’s clear that they’ve put some effort into making a better turntable rather than a novelty one. This does raise the question though: manufacturing practicalities aside could you 3D print the whole thing? We think that a 3D printed chassis could replace the aluminium one at the cost of much more bulk and loss of the svelte looks, but what about the tonearm? Would one of the carbon-fibre-infused filaments deliver enough stiffness? It would be particularly interesting we think, were someone to try.

Digital Measuring Wheel Is Exactly What It Sounds Like

You may have seen surveyors (or maths students) running around with measuring wheels, counting the clicks to measure distances. [AGBarber]’s digital measuring wheel works in much the same way, but with the convenience of a measurement you can read off a screen.

The design is simple, and relies on the outer wheel of the device turning a mouse encoder wheel. This is read by anArduino Pro Mini which runs the show and records the requisite measurements. It then drives an SSD1306 OLED display which shows the measurements to the user. It’s all wrapped up in a 3D printed housing that makes it easy to roll around the small handheld device.

The wheel’s maximum measuring length is 9999.99 cm, or just under 100 meters. Given the size of the device, that’s probably more than enough, but you could always build a bigger version if you wanted to measure longer distances.

Measuring wheels make it easy to measure along curves, and are just generally fun to play with as well. You could certainly use one to determine whether flat tyres are making your speedometer lie to you. Or, you could dive into this great talk on measurement from [Adam Savage].

Continue reading “Digital Measuring Wheel Is Exactly What It Sounds Like”

A small PCB with a microcontroller, two 7-segment LED displays, a speaker and some buttons

Hunt The Lunpus Is An ATtiny-Based Minimalist Game Console

In a world where game consoles come with ever-higher resolutions and ever-faster frame rates, it’s refreshing to see someone going in the opposite direction: [Doug McInnes]’s latest project is a tiny handheld game console with probably the lowest-resolution graphics possible. Hardware-wise, it’s a small PCB containing an ATtiny84, two seven-segment LED displays, a speaker and a handful of buttons. It’s the software that gives this project its magic, and all of it is available on GitHub, along with schematics and a PCB layout.

The game is called Hunt the Lunpus, and as the name suggests it’s inspired by the 1970s classic Hunt the Wumpus. The player moves through a maze of interconnected rooms, trying to avoid slime pits and marauding bats while searching for the Lunpus, a sleeping monster that will eat the player unless they defeat it first by shooting it with arrows. Four pushbuttons provide directional control, with a fifth serving as an “action” button to start the game and fire those arrows.

Whereas Wumpus was originally a text-based adventure game, Lunpus is fully graphical: the seven-segment displays indicate the cave’s walls, and flash in different ways to alert the player to the various hazards. [Doug] explains the events as they happen in the video embedded below; while it might take a bit of practice to find your way at first, we can already picture ourselves wandering through the caves with our quiver full of arrows, ready to hunt some Lunpus. Who needs 4K graphics, anyway?

If you’re into minimalist game consoles, there’s plenty to choose from: the LEDBOY renders Space Invaders on just a few LEDs, while TWANG needs nothing more than a single LED strip. You can also explore more mazes on this 8×8 LED matrix, or even hunt Wumpuses in a slightly-higher resolution.

Continue reading “Hunt The Lunpus Is An ATtiny-Based Minimalist Game Console”

Color Us Impressed: Redbean Runs A Web Server On Six Operating Systems

The holy grail of computing is to have some way to distribute a program to any computer. This is one of those totally unachievable goals, but many have tried with varying degrees of success.  People naturally think of Java, but even before that there was UCSD’s P-code and many other attempts to pull off the same trick. We were impressed, though, with Redbean 2.0 which uses a single executable file to run a webserver — or possibly other things — on six different operating systems. If the six operating systems were all flavors of Linux or Windows that wouldn’t be very interesting. But thanks to APE — the Actually Portable Executable — format, you can run under Windows, Linux, MacOS, OpenBSD, NetBSD, and FreeBSD.

This is quite a feat when you realize that most of these take wildly different file formats. There is one small problem: you can’t use much of anything on the host operating system. However, if you look at Redbean, you’ll see there is quite a lot you can do.

Continue reading “Color Us Impressed: Redbean Runs A Web Server On Six Operating Systems”

SATAn Turns Hard Drive Cable Into Antenna To Defeat Air-Gapped Security

It seems like [Mordechai Guri]’s lab at Ben-Gurion University is the place where air-gapped computers go to die, or at least to give up their secrets. And this hack using a computer’s SATA cable as an antenna to exfiltrate data is another example of just how many side-channel attacks the typical PC makes available.

The exploit, deliciously designated “SATAn,” relies on the fact that the SATA 3.0 interface used in many computers has a bandwidth of 6.0 Gb/s, meaning that manipulating the computer’s IO would make it possible to transmit data from an air-gapped machine at around 6 GHz. It’s a complicated exploit, of course, and involves placing a transmitting program on the target machine using the usual methods, such as phishing or zero-day exploits. Once in place, the transmitting program uses a combination of read and write operations on the SATA disk to generate RF signals that encode the data to be exfiltrated, with the data lines inside the SATA cable acting as antennae.

SATAn is shown in action in the video below. It takes a while to transmit just a few bytes of data, and the range is less than a meter, but that could be enough for the exploit to succeed. The test setup uses an SDR — specifically, an ADALM PLUTO — and a laptop, but you can easily imagine a much smaller package being built for a stealthy walk-by style attack. [Mordechai] also offers a potential countermeasure for SATAn, which basically thrashes the hard drive to generate RF noise to mask any generated signals.

While probably limited in its practical applications, SATAn is an interesting side-channel attack to add to [Dr. Guri]’s list of exploits. From optical exfiltration using security cameras to turning power supplies into speakers, the vulnerabilities just keep piling up.

Continue reading “SATAn Turns Hard Drive Cable Into Antenna To Defeat Air-Gapped Security”

Watering The Garden With A Solar-Powered System

Watering the garden is important to do regularly if you want your plants to thrive. [Nikodem Bartnik] built a system to handle it for him, keeping his garden on the grow.

The system has an Arduino commanding an irrigation system based around a pump delivering water from a reservoir. It’s paired with a water level sensor to keep an eye on the water available to the system. Moisture sensors are also used to monitor the prevailing soil conditions, to ensure the plants aren’t over- or under-watered. In this case, [Nikodem] designed his own resistive moisture sensors, which proved difficult but taught him a lot along the way. verything was then wrapped up in a food container to make it waterproof for installation outside. A solar panel and charging system was also installed to power the whole setup without requiring a mains connection.

While this system worked, the moisture sensors were a bit unreliable and there was a lot of cabling involved. A second revision got rid of the sensors and used a Pi Pico to implement a simple timer-based irrigation scheme.

Either way, both systems worked and helped keep the vital water flowing to the garden bed. Automatic plant watering is a bit of a popular theme around here, and we’ve seen some nifty hacks in that realm of late. Video after the break.

Continue reading “Watering The Garden With A Solar-Powered System”

ESP32 Gets A Nifty Serial Console Library

Sometimes you need to get a project to talk to you, so you can see what’s going on inside. The ESP32 console Arduino library from [jbtronics] promises just that.

The library adds a simple serial console to the ESP32, and is compatible with the Arduino ecosystem to boot. It’s set up to allow the easy addition of custom commands so you can tweak the console to suit your own projects. It’s remarkably complete with nifty features, too. There’s autocomplete as well as a navigable command history – the sorts of features you only expect from a modern OS terminal. A bunch of system commands are built-in, too, for checking the status of things like the memory, network interface, and so on.

The tool is available via the Arduino library manager or the PlatformIO registry. You’ll want to use it with a VT-100 compatible terminal like PuTTY or similar, which lets you use all the fancy features including color output. [jbtronics] hopes to port it to the ESP8266 soon, too!

We’ve seen some other great serial tools of late, too. If you’re brewing up your own nifty console hacks, be sure to drop us a line!