2023 Halloween Hackfest: Meet Creepsy, The Robotic People-Seeking Ghost

The 2023 Halloween Contest might be over, but we saw some great entries and clever modifications bringing projects into the Halloween spirit. One of them is Creepsy by [Hazal Mestci], a Raspberry Pi-based robotic ghost able to autonomously pick people out of a crowd and glide towards them, emitting eerie sounds as it does so.

The tech behind Creepsy (GitHub repository) originally led the somewhat less spooky existence of a mobile drink serving platform. But with a little bit of modification and the addition of a bedsheet with cutouts for sensors, the transformation into an obstacle-avoiding people-seeking spooker was complete. Key to this transformation was the Viam Python SDK, a software Swiss army knife used by robot builders everywhere. Creepsy itself was built using handy aluminum extrusion, and 3D printed parts along with the requisite suite of motors, cameras, and ultrasonic sensors.

Thanks to everyone who participated in the 2023 Halloween Contest. Got an idea for next year? It’s never too early to get started because ideas are great, but nothing beats “done on time”!

Hackaday Prize 2023: An Agricultural Robot That Looks Ready For The Field

In the world of agriculture, not all enterprises are large arable cropland affairs upon which tractors do their work traversing strip by strip under the hot sun. Many farms raise far more intensive crops on a much smaller scale, and across varying terrain. When it comes to automation these farms offer their own special challenges, but with the benefit of a smaller machine reducing some of the engineering tasks. There’s an entry in this year’s Hackaday prize which typifies this, [KP]’s Agrofelis robot is a small four-wheeled carrier platform designed to deliver autonomous help on smaller farms. It’s shown servicing a vineyard with probably one of the most bad-ass pictures you could think of as a pesticide duster on its implement platform makes it look for all the world like a futuristic weapon.

A sturdy tubular frame houses the battery bank and brains, while motive power is provided by four bicycle derived motorized wheels with disk brakes. Interestingly this machine steers mechanically rather than the skid-steering found in so many such platforms. On top is a two degrees of freedom rotating mount which serves as the implement system — akin to a 3-point linkage on a tractor. This is the basis of the bad-ass pesticide duster turret mentioned above. Running it all is a Nvidia Jetson Nano, with input from a range of sensors including global positioning and LIDAR.

The attention to detail in this agricultural robot is clearly very high, and we could see machines like it becoming indispensable in the coming decades. Many tasks on a small farm are time-consuming and involve carrying or wheeling a small machine around performing the same task over and over. Something like this could take that load off the farmer. We’ve been there, and sure would appreciate something to do the job.

While we’re on the subject of farm robots, this one’s not the only Prize entry this year.

Hackaday Prize 2023: Computer Vision Guides This Farm Mower

It’s a problem common to small-scale mixed agriculture worldwide, that of small areas of grass and weeds that need mowing. If you have a couple of sheep and enough electric fence there’s one way to do it, otherwise, if you rely on machinery, there’s a lot of hefting and pushing a mower in your future. Help is at hand, though, thanks to [Yuta Suito], whose pylon-guided mower is a lightweight device that mows an area defined by a set of orange traffic cones. Simply set the cones around the edge of the plot, place the mower within them, and it does the rest.

At its heart is a computer vision system that detects the cones and estimates distance from them by their perceived size. It mows in a spiral pattern by decreasing the cone height at which it turns, thus covering the whole area set out. Inside is a Raspberry Pi doing the heavy lifting, and because it’s designed for farmland rather than lawns, it has an adaptive track system to deal with obstacles. In its native Japan there is an ageing rural population, so it is particularly suitable for being operated by an older person. See it in action in the video below the break.

A robotic mower aimed at farms is certainly unusual here, but we’ve seen a lot of more conventional lawnmowers.

Continue reading “Hackaday Prize 2023: Computer Vision Guides This Farm Mower”

Hackaday Prize 2023: PAROL6 – A GPL Desktop Robotic Arm

Parol 6 is a 3D-printed six-axis robot arm created by [Petar Crnjak] as a combination of the principles from a few previous projects. Aside from a pneumatic gripper, each axis is driven by a stepper motor, with at least a few of these axes being driven through a metal planetary gearbox for extra precision and torque.

From what we can glean from the work-in-progress documentation, there are some belt drives on four of the relevant axes and a mix of NEMA17 format steppers driving either 20:1 or 10:1 reduction boxes. There appears to be a mix of inductive sensors and traditional microswitches used, but it’s not so easy to work out where these are placed. Continue reading “Hackaday Prize 2023: PAROL6 – A GPL Desktop Robotic Arm”

A New Educational Robotics Platform

When looking for electronics projects to use in educational settings, there is no shortage of simple, lightweight, and easily-accessible systems to choose from. From robotic arms, drones, walking robots, and wheeled robots, there is a vast array of options. But as technology marches on, the robotics platforms need to keep up as well. This turtle-style wheeled robot called the Trundlebot uses the latest in affordable microcontrollers on a relatively simple, expandable platform for the most up-to-date educational experience.

The robot is built around a Raspberry Pi Pico, with two low-cost stepper motors to drive the wheeled platform. The chassis can be built out of any material that can be cut in a laser cutter, but for anyone without this sort of tool it is also fairly easy to cut the shapes out by hand. The robot’s functionality can be controlled through Python code, and it is compatible with the WizFi360-EVB-Pico which allows it to be remote controlled through a web application. The web interface allows easy programming of commands for the Trundlebot, including a drag-and-drop feature for controlling the robot.

With all of these features, wireless connectivity, and a modern microcontroller at the core, it is an excellent platform for educational robotics. From here it wouldn’t be too hard to develop line-follower robots, obstacle-avoiding robots, or maze-solving robots. Other components can easily be installed to facilitate these designs as well. If you’re looking for a different style robot, although not expressly for educational purposes this robotic arm can be produced for under $60.

Roboticized Zelda Ocarina Plays Itself

[3DSage] has long been obsessed with a certain type of musical instrument after playing The Legend of Zelda: Ocarina of Time. It spawned a project to robotically control an ocarina, which turned out beautifully.

The first step was to build an air blower that could excite the ocarina into making noise. With that completed, [3D Sage] then 3D scanned an ocarina so he could design a mechanism that would fit the instrument and let it be played. The final design uses a set of solenoids with rubber caps to plug the various holes of the ocarina to play different notes. The solenoids are actuated according to notes pressed on a printed keyboard. Alternatively, it can be programmed to play pre-stored songs by itself.

The results are charming, though the ocarina does sound a little off-pitch. Overall, though, the project is a great use case for a 3D scanner, since the instrument itself is such an odd irregular shape.

Continue reading “Roboticized Zelda Ocarina Plays Itself”

DIY Robotic Actuator Built For Walking Robots

[Aaed Musa] has built a variety of robots over the years, but found off-the-shelf servos to be underwhelming for his work. Thus, he set out to build a better actuator to support his goals of building a high-performance walking bot in future.

[Aaed] decided to try and build a quasi-direct drive actuator, similar to those used in MIT’s agile mini Cheetah robot. It consists of a powerful brushless DC motor driving a 9:1 planetary gear reduction built with 3D printed parts, which provides high torque output. It’s designed to be run with an ODrive S1 motor controller with encoder feedback for precise control.

The actuator weighs in at a total of 935 grams. It’s not cheap, with the bill of materials totaling just under $250. For your money, though, you get a responsive robotic actuator with a hefty holding torque of over 16 Nm, which [Aaed] demonstrates by having the actuator shake around some dumbells on a long lever arm.

Walking robots have exploded in popularity ever since Spot hit the scene. We’ve seen everything from complex builds to super-simple single-servo designs.

Continue reading “DIY Robotic Actuator Built For Walking Robots”