Recording Video In The Era Of CRTs: The Video Camera Tube

We have all watched videos of concerts and events dating back to the 1950s, but probably never really wondered how this was done. After all, recording moving images on film had been done since the late 19th century. Surely this is how it continued to be done until the invention of CCD image sensors in the 1980s? Nope.

Although film was still commonly used into the 1980s, with movies and even entire television series such as Star Trek: The Next Generation being recorded on film, the main weakness of film is the need to move the physical film around. Imagine the live video feed from the Moon in 1969 if only film-based video recorders had been a thing.

Let’s look at the video camera tube: the almost forgotten technology that enabled the broadcasting industry. Continue reading “Recording Video In The Era Of CRTs: The Video Camera Tube”

Tangential Oscillating Cutting Knife Makes Parts From The Ups And Downs

If you thought using a utility knife manually was such a drag, you’re not alone. [luben111] took some initiative to take the wear and tear off your hands and put it into a custom machine tool they call TOCK, or Tangental Oscillating Cutting Knife. TOCK bolts onto your typical CNC router, giving it the ability to make short work of thin materials like cardboard. Rather than apply a constant downward pressure, however, TOCK oscillates vertically at high speeds, perforating the material while cutting through it at a respectable clip.

TOCK’s oscillations are driven by a radially symmetric cam mechanism, allowing the blade to completely pivot full circle while still performing the oscillations. While traditional inexpensive methods for bolting a blade to a CNC machine passively swivel along the path they’re directed, [luben111] has taken the generous extra step of powering that axis, commanding the blade to actively rotate in the cutting director with a custom script that converts PLT files to G-code. The net result is a tool that preserves a tremendous amount of detail in cumbersome thick materials, like cardboard. Best of all, the entire setup is documented on the Thingiverse with CAD files and light instructions. A few folks have even gone so far as to reproduce their own!

It’s great to see some dabbling in various disciplines to produce a working machine tool. As far as knives go, we’re starting to see a good spread of other utility knife augmentations and use cases, whether that’s a traditional CNC retrofit or a solid attempt at a homebrew ultrasonic mod.

Continue reading “Tangential Oscillating Cutting Knife Makes Parts From The Ups And Downs”

Gripper Uses Belts To Pinch And Grasp

For all the work done since the dawn of robotics, there is still no match for the human hand in terms of its dexterity and adaptability. Researchers of the IRIM Lab at Koreatech is a step closer with their ingenious BLT gripper, which can pinch with precision or grasp a larger object with evenly distributed force. (Video embedded below.)

The three fingered gripper is technically called a “belt and link actuated transformable adaptive gripper with active transition capability”. Each finger is a interesting combination of a rigid “fingertip” and actuation link, and a belt as a grasping surface. The actuation link has a small gearbox at it’s base to open and close the hand, and the hinge with the “fingertip” is spring-loaded to the open position. A flexible belt stretches between the finger tip and the base of the gripper, which can be tensioned to actuate the fingertip for pinching, or provide even force across the inside of the gripper for grasping. Two of the fingers can also rotate at the base to give various gripper configurations. This allows the gripper to be used in various ways, including smoothly shifting between pinching and grasping without dropping a object.

We love the relative simplicity of the mechanism, and can see it being used for general robotics and prosthetic hands, especially if force sensing is integrated.  The mechanism should be fairly easy to replicate using 3D printed components, a piece of toothed belt, and two cheap servos, so get cracking! Continue reading “Gripper Uses Belts To Pinch And Grasp”

Magnets Make Prototyping E-Textiles A Snap

How do you prototype e-textiles? Any way you can that doesn’t drive you insane or waste precious conductive thread. We can’t imagine an easier way to breadboard wearables than this appropriately-named ThreadBoard.

If you’ve never played around with e-textiles, they can be quite fiddly to prototype. Of course, copper wires are floppy too, but at least they will take a shape if you bend them. Conductive thread just wants lay there, limp and unfurled, mocking your frazzled state with its frizzed ends. The magic of ThreadBoard is in the field of magnetic tie points that snap the threads into place wherever you drape them.

The board itself is made of stiff felt, and the holes can be laser-cut or punched to fit your disc magnets. These attractive tie-points are held in place with duct tape on the back side of the felt, though classic double-stick tape would work, too. We would love to see somebody make a much bigger board with power and ground rails, or even make a wearable ThreadBoard on a shirt.

Even though [chrishillcs] is demonstrating with a micro:bit, any big-holed board should work, and he plans to expand in the future. For now, bury the needle and power past the break to watch [chris] build a circuit and light an LED faster than you can say neodymium.

The fiddly fun of e-textiles doesn’t end with prototyping — implementing the final product is arguably much harder. If you need absolutely parallel lines without a lot of hassle, put a cording foot on your sewing machine.

Continue reading “Magnets Make Prototyping E-Textiles A Snap”

Be Wary Of Radioactive Bracelets And Similar

Before you start cutting up that ‘negative ion’ health bracelet or personal massager, be aware that these are highly likely to contain thorium oxide or similar radioactive powder, as this research video by [Justin Atkin] (also embedded after the break) over at The Thought Emporium YouTube channel shows. Even ignoring the irony that thorium oxide is primarily an alpha (He+) emitter and thus not a ‘negative ion’ source (which would be beta decay, with e), thorium oxide isn’t something you want on your skin, or inside your lungs.

These bracelets and similar items appear to embed grains of thorium oxide into the usual silicon-polymer-based bracelet material, without any measures to prevent grains from falling out over time. More dangerous are the items such as the massage wand, which is essentially a metal tube that is filled with thorium oxide powder. This is not the kind of item you want to open on your kitchen table and have it spill everywhere.

Considering that these items are readily available for sale on Amazon, EBay and elsewhere, giving items like these a quick check with the ol’ Geiger counter before ripping them open or cutting them up for a project seems like a healthy idea. Nobody wants to cause a radiological incident in their workshop, after all.

Continue reading “Be Wary Of Radioactive Bracelets And Similar”

OpenChronograph Lets You Roll Your Own Smart Watch

At first, smartwatches were like little tiny tablets or phones that you wore on your wrist. More recently though we have noticed more “hybrid” smartwatches, that look like a regular watch, but that use their hands to communicate data. For example you might hear a text message come in and then see the hand swing to 1, indicating it is your significant other. Want to roll your own? The OpenChronograph project should be your first stop.

The watches are drop in replacements for several Fossil and Skagen watch boards (keep in mind Fossil and Skagen are really the same company). There’s an Arduino-compatible Atmega328p, an ultra low power real time clock, a magnetometer, pressure sensor, temperature sensor, and support for a total of three hands. You can even create PCB artwork that will act as the watch face using Python.

Continue reading “OpenChronograph Lets You Roll Your Own Smart Watch”

LoRa Mesh Network With Off-the-Shelf Hardware

An ideal application for mesh networking is off-grid communication; when there’s no cellular reception and WiFi won’t reach, wide-area technologies like LoRa can be used to create ad hoc wireless networks. Whether you’re enjoying the outdoors with friends or conducting a rescue operation, a cheap and small gadget that will allow you to create such a network and communicate over it would be a very welcome addition to your pack.

That’s exactly the goal of the Meshtastic project, which aims to take off-the-shelf ESP32 LoRa development boards and turn them into affordable mesh network communicators. All you need to do is buy one of the supported boards, install the firmware, and starting meshing. An Android application that will allow you to use the mesh network to send basic text messages is now available as an alpha release, and eventually you’ll be able to run Signal over the LoRa link.

Navigating to another node in the network.

Developer [Kevin Hester] tells us that these are still the very early days, and there’s plenty of work yet to be done. In fact, he’s actively looking to bring a few like-minded individuals onto the project. So if you have experience with the ESP32 or mobile application development, and conducting private communications over long-range wireless networks sounds like your kind of party, this might be your lucky day.

From a user’s perspective, this project is extremely approachable. You don’t need to put any custom hardware together, outside of perhaps 3D printing a case for your particular board. The first time around you’ll need to flash the firmware with esptool.py, but after that, [Kevin] says future updates can be handled by the smartphone application.

Incidentally, the primary difference between the two boards is that the larger and more expensive one includes GPS. The mesh networking side of things will work with either board, but if everyone in your group has the GPS-equipped version, each user will be able to see the position of everyone else in the network.

This isn’t the first time we’ve seen LoRa used to establish off-grid communications, and it surely won’t be the last. The technology is perfect for getting devices talking where there isn’t any existing infrastructure, and we’re excited to see more examples of how it can be used in this capacity.