LED Cube Is A Little Bit Of Kit, A Lot Of Point-to-point Soldering

[Craig Lindley] recently finished building his own RGB LED cube project. It’s made up of four layers of 4×4 LED grids, but you may notice that the framework that supports the structure is not the usual ratsnet of wires we’ve come to expect. They’re actually long, thin circuit boards. [Craig] grabbed the Rainbow Cube kit sold by Seeed Studio for this project. But instead of pairing it with their Rainbowduino driver, he built his own to give him more options on how to control the blinky lights.

He’s using an Arduino Uno to control the display, choosing TLC5940 driver chips to safely provide the juice necessary to light up the grid. These drivers also offer 12-bit pulse-width modulation for easy color mixing. Driving the LEDs directly would have taken a large number of these expensive chips (over $4 a piece), but if multiplexed the design only calls for two of them.

Check out a video of the finished cube reacting to music thanks to the microphone and amplifier circuit [Craig] build into the driver board.

Continue reading “LED Cube Is A Little Bit Of Kit, A Lot Of Point-to-point Soldering”

Flowerboard LED Cube

Here’s a neat 4x4x4 LED cube made with an ElecFreaks Flower Protoboard.

A few days ago, we posted a neat new prototyping board made specifically for SMD work. Instead of the usual ‘holes-with-circles’ protoboard layout, the ElecFreaks team decided to go with a flower-shaped pad. This makes it especially easy to deal with SMD components when building whatever. To demonstrate their new protoboard, ElecFreaks built an awesome-looking 4^3 LED cube. Just look at those solder traces.

The LED cube itself is nothing we haven’t seen before, but the construction of this thing is amazing. The entire build is on the Arduino Mega Flower shield, meaning there are no wires at all. Everything, from the resistors to the transistors, is an SMD component. The only problem now is bending and soldering all those LED leads.

This Flower Protoboard is starting to look more and more interesting; check it out in action after the break.

Continue reading “Flowerboard LED Cube”

This Cube Of Playroom Drawers Is Quite Puzzling

If you’re looking for a piece of custom furniture to anchor your child’s playroom, this Rubik’s cube chest of drawers is just the thing. [Makendo] went the extra couple of miles on the project, building the entire thing from scratch and adding one clever feature after another to make it something special.

It’s made up of three plywood boxes, open on one side to accept a plywood drawer. The drawers were carefully fitted so that it is difficult to see which side is actually the drawer face. [Makendo] even routed a hash-mark of grooves into each face of the cube to make it look like the seams that make up the 9×9 grid of colored squares. Speaking of those colors, the “stickers” themselves are made of 1/4″ plywood and are not permanently affixed. Each is held on with a magnet plus a pair of dowels to keep it from spinning. This way you can rearrange the colors as often as you please.

Each layer of the cube spins thanks to some lazy susan bearings. [Makendo] didn’t want to add too much distance between the different modules so he routed out each side to fit the circular hardware. As a final touch, the drawers themselves can be locked in place using a dowel underneath one of the colored squares. We’ve embedded a video of the cube at play after the break.

Continue reading “This Cube Of Playroom Drawers Is Quite Puzzling”

Voxel Shield Makes Driving LED Cubes Easy

voxel_shield_led_cube

An Arduino can handle running a small LED cube on its own, but if you’re planning on building something big, eventually you are going to run out of pins. For something like an 8x8x8 cube, odds are you will have to turn to shift registers to get the job done. While you could design a breakout board full of shift registers on your own, [Connor] has done the work for you and produced an easy to use Arduino LED cube shield.

He calls his creation the Voxel Shield, and it incorporates 9 SN74LS595N shift registers and an external power plug for all of your LED cube needs. The shield can handle addressing up to 512 LEDs, making it an easy way to drive an 8x8x8 cube or even a 64×8 LED matrix.

It’s a nice clean and compact way to drive a large number of LEDs, so if you have the need, be sure to swing by his site – he has made his schematics and board layout files available to all comers.

[Thanks, Thomas]

ATtiny Hacks: ATtiny-controlled 4x4x4 LED Cube Has A Unique Design

ATtiny Hacks Theme Banner

simple_attiny_led_cube_charlieplexing

[Tom] recently started experimenting with Charlieplexing, and wrote in to share the 4x4x4 cube he built with an ATtiny24. Similar to this minimalist 4x4x4 LED cube we featured the other day, [Tom’s] version attempts to use the least pins possible to drive the LEDs, but in a different manner.

[Tom] didn’t want to sacrifice brightness, so he decided that the LEDs would have a 1/8 duty cycle. The problem is that the ATtiny’s I/O ports can’t support that kind of current so he needed a different means of driving the LEDs. Rather than employ any sort of shift register to control the LEDs, he opted to exclusively use transistors as he had done in previous projects.

For his Charlieplexed cube to use a total of 9 I/O pins he had to get creative with his design. He broke each level of the structure into two non-connected groups of LEDs, utilizing diagonal interconnects to get everything wired up properly.

It seems to work quite nicely as you can see in the video below. While it uses two more I/O lines than the other ATtiny cube we featured recently, we love the simple, shift register-less design.

Continue reading “ATtiny Hacks: ATtiny-controlled 4x4x4 LED Cube Has A Unique Design”

ATtiny Hacks: 2313 Driving A 4x4x4 LED Cube

ATtiny Hacks Theme Banner

[Kirill] wrote in to share his ATtiny hack, a 4x4x LED cube. The 64 LED display is a great choice to fully utilize the hardware he chose. It’s multiplexed by level. Each of the four levels are wired with common cathodes, switched by a 2N3904 transistor. The anodes are driven by two 595 shift registers, providing a total of 16 addressable pins which matches the 4×4 grid perfectly. All said and done it only takes seven of the ATtiny2313’s pins to drive the display. This is one pin more than the chip’s smaller cousins like the ATtiny85 can provide. But, this chip does include a UART which means the project could potentially be modified to receive animation instructions from a computer or other device.

You may have noticed the USB port in the image above. This is serving as a source for regulated power in lieu of having its own voltage regulation hardware and is not used for data at all. Check out the animations that [Kirill] uses on the display by watching the video after the break. You’ll find a link to the source code there as well.

Continue reading “ATtiny Hacks: 2313 Driving A 4x4x4 LED Cube”

The Weighted Companion Cube Will Never Threaten To Stab You And, In Fact, Is A Subwoofer

From the techPowerUp! forums comes an awesome weighted companion cube subwoofer built by the metonymical user named [Cube].

This build started off as a coffee table that was to have an oval glass top (no word if the edges were going to be blue or orange). The guts of the cube are taken from a 400 Watt sub. As any good sub builder would, [Cube] kept the air volume and port tuning of the donor box.

We’ve seen a companion cube sub before that featured EL wire for a ‘glowing cube’ effect, but [Cube] may have taken things a little too far by including glowing rings on each side of the cube. The rings lit by 2,500 LEDs mounted on pieces of perspex and wired point-to-point. While [Cube] claims he’s ‘not a electronics guru,’ he certainly has a lot of patience to assemble those lights.

Check out [Cube]’s YouTube build video after the link. Credit to [Todd] for sending this one in.

Continue reading “The Weighted Companion Cube Will Never Threaten To Stab You And, In Fact, Is A Subwoofer”