This SSD Will Self Destruct In Ten Seconds…

In case you can’t wait for your flash memory to die from write cycling, TeamGroup now has a drive that, via software or hardware, can destroy its own flash chips with a surge of voltage. If you wonder why you might want this, there are military applications where how you destroy a piece of equipment is right up there in the manual with how to use it.

They have obviously put a lot of thought into it, as you can see in the video below. Apparently, if you are in the middle of blowing up the flash and power cuts out, the chip will resume frying itself when you restore power.

Continue reading “This SSD Will Self Destruct In Ten Seconds…”

Front panel of Sony Blu-ray player

Blu-ray Won, But At What Cost?

Over on their substack [ObsoleteSony] has a new article: The Last Disc: How Blu-ray Won the War but Lost the Future.

In this article the author takes us through the history of Blu-ray media and how under Sony’s stewardship it successfully defeated the competing format of the time, HD DVD. Sony started behind the eight ball but through some deft maneuvering managed to come out on top. Perhaps the most significant contributing factor was the inclusion of Blu-ray drives in the PlayStation 3.

The person leading the Blu-ray initiative for Sony was Masanobu Yamamoto, whose legacy was the compact disc. What was needed was a personal media format which could deliver for high-definition 1080p video. As the DVD format did not have the storage capacity required, new formats needed to be developed. The enabling technology for both Blu-ray and HD DVD media was the blue laser as it allowed for more compact encoding.

Sony’s Blu-ray format became the dominating format for high-definition personal media…just as physical media died.

Thanks to [Stephen Walters] for writing in about this one.

The Fight To Save Lunar Trailblazer

After the fire and fury of liftoff, when a spacecraft is sailing silently through space, you could be forgiven for thinking the hard part of the mission is over. After all, riding what’s essentially a domesticated explosion up and out of Earth’s gravity well very nearly pushes physics and current material science to the breaking point.

But in reality, getting into space is just the first on a long list of nearly impossible things that need to go right for a successful mission. While scientific experiments performed aboard the International Space Station and other crewed vehicles have the benefit of human supervision, the vast majority of satellites, probes, and rovers must be able to operate in total isolation. With nobody nearby to flick the power switch off and on again, such craft need to be designed with multiple layers of redundant systems and safe modes if they’re to have any hope of surviving even the most mundane system failure.

That said, nobody can predict the future. Despite the best efforts of everyone involved, there will always be edge cases or abnormal scenarios that don’t get accounted for. With proper planning and a pinch of luck, the majority of missions are able to skirt these scenarios and complete their missions without serious incident.

Unfortunately, Lunar Trailblazer isn’t one of those missions. Things started well enough — the February 26th launch of the SpaceX Falcon 9 went perfectly, and the rocket’s second stage gave the vehicle the push it needed to reach the Moon. The small 210 kg (460 lb) lunar probe then separated from the booster and transmitted an initial status message that was received by the Caltech mission controllers in Pasadena, California which indicated it was free-flying and powering up its systems.

But since then, nothing has gone to plan.

Continue reading “The Fight To Save Lunar Trailblazer”

Do You Trust This AI For Your Surgery?

If you are looking for the perfect instrument to start a biological horror show in our age of AI, you have come to the right place. Researchers at Johns Hopkins University have successfully used AI-guided robotics to perform surgical procedures. So maybe a bit less dystopian, but the possibilities are endless.

Pig parts are used as surrogate human gallbladders to demonstrate cholecystectomies. The skilled surgeon is replaced with a Da Vinci research kit, similarly used in human controlled surgeries.

Researchers used an architecture that uses live imaging and human corrections to input into a high-level language model, which feeds into the controlling low-level model. While there is the option to intervene with human input, the model is trained to and has demonstrated the ability to self-correct. This appears to work fairly well with nothing but minor errors, as shown in an age-restricted YouTube video. (Surgical imagery, don’t watch if that bothers you.)

Flowchart showing the path of video to LLM to low level model to control robot

It’s noted that the robot performed slower than a traditional surgeon, trading time for precision. As always, when talking about anything medical, it’s not likely we will be seeing it on our own gallbladders anytime soon, but maybe within the next decade. If you want to read more on the specific advancements, check out the paper here.

Medical hacking isn’t always the most appealing for anyone with a weak stomach. For those of us with iron guts make sure to check out this precision tendon tester!

Four brown perf board circuits are visible in the foreground, each populated with many large DIP integrated circuits. The boards are connected with grey ribbon cable. Behind the boards a vacuum fluorescent display shows the words “DIY CPU.”

Designing A CPU With Only Memory Chips

Building a simple 8-bit computer is a great way to understand computing fundamentals, but there’s only so much you can learn by building a system around an existing processor. If you want to learn more, you’ll have to go further and build the CPU yourself, as [MINT] demonstrated with his EPROMINT project (video in Polish, but with English subtitles).

The CPU began when [MINT] began experimenting with uses for his collection of old memory chips, and quickly realized that they could do quite a bit more than store data. After building a development board for single-chip based programmable logic, he decided to build a full CPU out of (E)EPROMs. The resulting circuit spans four large pieces of perfboard, weighs in at over half a kilogram, and took several weeks of soldering to create. Continue reading “Designing A CPU With Only Memory Chips”

Hackaday Links Column Banner

Hackaday Links: June 29, 2025

In today’s episode of “AI Is Why We Can’t Have Nice Things,” we feature the Hertz Corporation and its new AI-powered rental car damage scanners. Gone are the days when an overworked human in a snappy windbreaker would give your rental return a once-over with the old Mark Ones to make sure you hadn’t messed the car up too badly. Instead, Hertz is fielding up to 100 of these “MRI scanners for cars.” The “damage discovery tool” uses cameras to capture images of the car and compares them to a model that’s apparently been trained on nothing but showroom cars. Redditors who’ve had the displeasure of being subjected to this thing report being charged egregiously high damage fees for non-existent damage. To add insult to injury, if renters want to appeal those charges, they have to argue with a chatbot first, one that offers no path to speaking with a human. While this is likely to be quite a tidy profit center for Hertz, their customers still have a vote here, and backlash will likely lead the company to adjust the model to be a bit more lenient, if not outright scrapping the system.

Continue reading “Hackaday Links: June 29, 2025”

Resin keycap made from dried flowers

How To Make A Beautiful Floral Keycap Using Resin

Here’s a fun build. Over on their YouTube channel our hacker [Atasoy] shows us how to make a custom floral keyboard keycap using resin.

We begin by using an existing keycap as a pattern to make a mold. We plug the keycap with all-purpose adhesive paste so that we can attach it to a small sheet of Plexiglas, which ensures the floor of our mold is flat. Then a side frame is fashioned from 100 micron thick acetate which is held together by sticky tape. Hot glue is used to secure the acetate side frame to the Plexiglas floor, keeping the keycap centered. RTV2 molding silicone is used to make the keycap mold. After 24 hours the silicone mold is ready.

Then we go through a similar process to make the mold for the back of the keycap. Modeling clay is pushed into the back of the keycap. Then silicone is carefully pushed into the keycap, and 24 hours later the back silicone mold is also ready.

Continue reading “How To Make A Beautiful Floral Keycap Using Resin”