Playing Chess Against LLMs And The Mystery Of Instruct Models

At first glance, trying to play chess against a large language model (LLM) seems like a daft idea, as its weighted nodes have, at most, been trained on some chess-adjacent texts. It has no concept of board state, stratagems, or even whatever a ‘rook’ or ‘knight’ piece is. This daftness is indeed demonstrated by [Dynomight] in a recent blog post (Substack version), where the Stockfish chess AI is pitted against a range of LLMs, from a small Llama model to GPT-3.5. Although the outcomes (see featured image) are largely as you’d expect, there is one surprise: the gpt-3.5-turbo-instruct model, which seems quite capable of giving Stockfish a run for its money, albeit on Stockfish’s lower settings.

Each model was given the same query, telling it to be a chess grandmaster, to use standard notation, and to choose its next move. The stark difference between the instruct model and the others calls investigation. OpenAI describes the instruct model as an ‘InstructGPT 3.5 class model’, which leads us to this page on OpenAI’s site and an associated 2022 paper that describes how InstructGPT is effectively the standard GPT LLM model heavily fine-tuned using human feedback.

Continue reading “Playing Chess Against LLMs And The Mystery Of Instruct Models”

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

Hackers, Patents, And 3D Printing

Last week, we ran a post about a slightly controversial video that claimed that a particular 3D-printing slicing strategy was tied up by a patent troll. We’re absolutely not lawyers here at Hackaday, but we’ve been in the amateur 3D printing revolution since the very beginning, and surprisingly patents have played a role all along.

Modern fused-deposition modelling (FDM) 3D printing began with Stratasys’ patent US5121329A, “Apparatus and method for creating three-dimensional objects”, and the machines they manufactured and sold based on the technology. Go read the patent, it’s an absolute beauty and has 44 different claims that cover just about everything in FDM printing. This was the watershed invention, and today, everything claimed in the patent is free.

Stratasys’ patent on the fundamental FDM method kept anyone else from commercializing it until the patent expired in 2009. Not coincidentally, the first available home-gamer 3D printer, the Makerbot Cupcake, also went on sale in 2009.

The Stratasys machines were also one of the big inspirations for Adrian Bowyer to start the RepRap project, the open-source movement that basically lead to us all having cheap and cheerful 3D printers today, and he didn’t let the patent stop him from innovating before it lapsed. Indeed, the documentation for the RepRap Darwin dates back to 2007. Zach [Hoeken] Smith delivered our hackerspace the acrylic parts to make one just around that time, and we had it running a year or two before the Cupcake came out of the company that he, Bre, and Adam shortly thereafter founded.

The story of hackers and 3D printers is longer than the commercial version of the same story would imply, and a lot of important innovations have come out of our community since then too. For instance, have a look at Stratasys’ patent on heated bed technology. At first read, it seems to cover removable heated beds, but have a look at the cutout at the end of claim 1: “wherein the polymer coating is not a polymer tape”. This cutout is presumably in response to the at-the-time common practice of buying Kapton, PEI, or PET tape and applying that to removable heated bed surfaces. I know I was doing that in 2012, because I read about it on IRC or something, long before the Stratasys patent was filed in 2014. They could only get a patent for sprayed-on coatings.

As [Helge] points out, it’s also easily verifiable that the current patent on “brick layers” that we’re worrying about, filed in 2020, comes later than this feature request to Prusa Slicer that covers essentially the same thing in 2019. We assume that the patent examiner simply missed that obvious prior art – they are human after all. But I certainly wouldn’t hesitate to implement this feature given the documented timing.

I would even be so bold as to say that most of the post-2010 innovation in 3D printing has been made by hobbyists. While the RepRap movement was certainly inspired by Stratasys’ invention in the beginning, our community is where the innovation is happening now, and maybe even more starkly on the software side of things than the hardware. Either way, as long as you’re just doing it for fun, let the suits worry about the patents. Hackers gotta hack.

Spotted At Supercon: Glowtape Wearable Display

We’re big fans of unusual timepieces here at Hackaday, so it didn’t take long before somebody called our attention to the gloriously luminescent watch that [Henner Zeller] was wearing at this year’s Supercon.

He calls it the Glowtape, and it uses a dense array of UV LEDs and a long strip of glow-in-the-dark material to display the time and date, as well as images and long strings of text written out horizontally to create an impromptu banner. It looked phenomenal in person, with the energized areas on the tape glowing brightly during the evening festivities in the alleyway.

Continue reading “Spotted At Supercon: Glowtape Wearable Display”

WiFi Status Indicator Keeps Eye On The Network

These days, most of us take the instant availability of a high-speed link to the Internet for granted. But despite all of the latest technology, things still occasionally go pear-shaped — meaning that blistering fiber optic connection you’ve got to the world’s collected knowledge (not to mention, memes) can still go down when you need it the most.

After suffering some connectivity issues, [Arnov Sharma] decided to put together a little box that could alert everyone in visual range to the status of the local router. It won’t fix the problem, of course, but there’s a certain value to getting timely status updates. Using a 3D printed enclosure and a couple of custom PCBs, the build is fairly comprehensive, and could certainly be pressed into more advanced usage if given the appropriate firmware. If you’ve been thinking of a Internet-connected status indicator, this is certainly a project worth copying studying closely.

Continue reading “WiFi Status Indicator Keeps Eye On The Network”

It’s A Soldering Iron! It’s A Multimeter! Relax! It’s Both!

Imagine this. A young person comes to you wanting to get started in the electronic hobby. They ask what five things should they buy to get started. Make your list. We’ll wait. We bet we can guess at least two of your items: a multimeter, and a soldering iron. [LearnElectroncsRepair] recently showed us a review of the Zotek Zoyi ZT-N2 which is a soldering iron and a multimeter in one unit. You can watch the video review below.

Honestly, when we heard about this, we didn’t think much of the combination. It doesn’t seem like having your probe get red hot is a feature. However, the probe tip replaces the soldering iron tip, so you are either soldering or measuring, but not both at the same time.

Continue reading “It’s A Soldering Iron! It’s A Multimeter! Relax! It’s Both!”

BASIC Co-Inventor Thomas Kurtz Has Passed Away

It’s with sadness that we note the passing of Thomas E. Kurtz, on November 12th. He was co-inventor of the BASIC programming language back in the 1960s, and though his creation may not receive the attention in 2024 that it would have done in 1984, the legacy of his work lives on in the generation of technologists who gained their first taste of computer programming through it.

A BBC Micro BASIC program that writes "HELLO HACKADAY!" to the screen multiple times.
For the 1980s kids who got beyond this coding masterpiece, BASIC launched many a technology career.

The origins of BASIC lie in the Dartmouth Timesharing System, like similar timesharing operating systems of the day, designed to allow the resources of a single computer to be shared across many terminals. In this case the computer was at Dartmouth College, and BASIC was designed to be a language with which software could be written by average students who perhaps didn’t have a computing background. In the decade that followed it proved ideal for the new microcomputers, and few were the home computers of the era which didn’t boot into some form of BASIC interpreter. Kurtz continued his work as a distinguished academic and educator until his retirement in 1993, but throughout he remained as the guiding hand of the language.

Should you ask a computer scientist their views on BASIC, you’ll undoubtedly hear about its shortcomings, and no doubt mention will be made of the GOTO statement and how it makes larger projects very difficult to write. This is all true, but at the same time it misses the point of it being a readily understandable language for first-time users of machines with very little in the way of resources. It was the perfect programming start for a 1970s or 1980s beginner, and once its limitations had been reached it provided the impetus for a move to higher things. We’ve not written a serious BASIC program in over three decades, but we’re indebted to Thomas Kurtz and his collaborator for what they gave us.

Thanks [Stephen Walters] for the tip.

RISC-V Pushes 400 Million Forth Words Per Second

We’ll be honest. Measuring Forth words per second doesn’t seem like a great benchmark since a Forth word could be very simple or quite complex. But we think the real meaning is “up to 400 million words per second.” There was a time when that level of performance would take a huge computer. These days, a simple board that costs a few bucks can do the trick, according to [Peter Forth] in an online presentation.

The key is the use of the Milk V Duo and some similar boards. Some of these look similar to a Raspberry Pi Pico. However, this chip on board has two RISC V cores, an ARM core, and an 8051. There’s also an accelerator coprocessor for vector operations like AI or video applications.

Continue reading “RISC-V Pushes 400 Million Forth Words Per Second”