Old Clock Transformed Into Mesmerizing Light Display

It’s easy to find a cheap clock at any dollar store that will manage to tell the time, but chances are that the plastic-fantastic construction won’t do you any aesthetic favors. Fear not, though, for [ROBO HUB]’s upcycled design turns a humble clock into a mesmerizing horological display of beauty.

The build starts by scavenging the movement out of a cheap plastic clock. A CD is then glued to the front of the movement to serve as a reflective backing plate. For numerals, the clock uses F3, F6, F9, and F12 keys nabbed from a keyboard.

The real party trick, though, is in the lighting. This build is elevated beyond hackneyed 90s desk clocks by the inclusion of a ring of LED strip lighting. When switched on, the LED light reflects and refracts on the surface of the CD, creating a mesmerizing shifting pattern featuring all the colors of the rainbow.

CDs are actually quite magical from an optical perspective and have all kinds of nifty uses.

Continue reading “Old Clock Transformed Into Mesmerizing Light Display”

Hackaday Prize 2023: This Challenge Makes It So Easy Being Green

This year’s Hackaday Prize is our first nice round number – number ten! We thought it would be great to look back on the history of the Prize and cherry-pick our favorite themes from the past. Last year’s entire theme was sustainable hacking, and we challenged you to come up with ways to generate or save power, keep existing gear out of the landfill, find clever ways to encourage recycling or build devices to monitor the environment and keep communities safer during weather disasters, and you all came through. Now we’re asking you to do it again.

There are hundreds of ways that we can all go a little bit lighter on this planet, and our Green Hacks Challenge encourages you to make them real. Whether you want to focus on clean energy, smarter recycling, preventing waste, or even cleaning up the messes that we leave behind, every drop of oil left unburned or gadget kept out of the landfill helps keep our world running a little cleaner. Here’s your chance to hack for the planet.

Inspiration

One thing we really loved about last year’s Green Hacks was that it encouraged people to think outside the box. For instance, we got some solar power projects as you’d expect, but we also got a few really interesting wind power entries, ranging from the superbly polished 3D Printed Portable Wind Turbine that won the Grand Prize to the experimental kite turbine in Energy Independence While Travelling, to say nothing of the offbeat research project toward making a Moss Microbial Fuel Cell.

Plastic was also in the air last year, as we saw a number of projects to reuse and recycle this abundant element of our waste stream. From a Plastic Scanner that uses simple spectroscopy to determine what type of plastic you’re looking at, to filament recyclers and trash-based 3D printers to make use of shredded plastic chips.

Finally, you all really put the science into citizen science with projects like OpenDendrometer that helps monitor a single tree’s health, and the Crop Water Stress Sensor that does the same for a whole field. Bees didn’t get left out of the data collection party either, with the Beehive Monitoring and Tracking project. And [Andrew Thaler]’s tremendously practical Ocean Sensing for Everyone: The OpenCTD brought the basics of oceanic environmental monitoring down to an affordable level.

Now It’s Your Turn to be Green

If any of the above resonates with your project goals, it’s time to put them into action! Start up a new project over on Hackaday.io, enter it into the Prize, and you’re on your way. Ten finalists will receive $500 and be eligible to win the Grand Prizes ranging from $5,000 to $50,000. But you’ve only got until Tuesday, July 4th to enter, so don’t sleep.

As always, we’d like to thank our sponsors in the Hackaday Prize, Supplyframe and DigiKey, but we’d also like to thank Protolabs for sponsoring the Green Hacks challenge specifically, and for donating a $5,000 manufacturing grant for one finalist. Maybe that could be you?

Minecraft In Minecraft On The CHUNGUS II

Minecraft is a simple video game. Well, it’s a simple video game that also has within it the ability to create all of the logic components that you’d need to build a computer. And building CPUs in Minecraft is by now a long-standing tradition.

Enter CHUNGUS II. The Computational Humongous Unconventional Number and Graphics Unit by [Sammyuri] is the biggest and baddest Minecraft computer that we’ve ever seen. So big, in fact, that it was finally reasonable to think about porting a stripped-down version of Minecraft to the computer itself. Yes, that’s right, Minecraft running in Minecraft. (Video embedded below.) Writing the compiler and programming the game brought two more hackers to the party, [Uwerta] and [StackDoubleFlow], and quite honestly, we’re amazed that a team as small as three people pulled this off.

Anyway, once you’ve picked your jaw up off the floor, also check out [Sammyuri]’s video on just the CHUNGUS II computer itself. (Also embedded below.) Seeing the architecture is interesting, even if you don’t speak Redstone as fluently as our heroes here. We love that the assembler creates a block of ROM – out of Minecraft blocks – that you can then cut/paste into the game’s reality.

For a “simple” game about breaking blocks and punching trees, Minecraft has inspired hackers to make the game better both inside and outside of the real world. For instance, for the latest in performant open-source Minecraft servers, check out Folia. Maybe, one day, they’ll build CHUNGUS II in the real world. It could happen.

Thanks [dbcdr] for the tip!

Continue reading “Minecraft In Minecraft On The CHUNGUS II”

3D Model Subscriptions Are Coming, But Who’s Buying?

We’ve all been there before — you need some 3D printable design that you figure must be common enough that somebody has already designed it, so you point your browser to Thingiverse or Printables, and in a few minutes you’ve got STL in hand and are ready to slice and print. If the design worked for you, perhaps you’ll go back and post an image of your print and leave a word of thanks to the designer.

Afterwards, you’ll probably never give that person a second thought for the rest of your life. Within a day or two, there’s a good chance you won’t even remember their username. It’s why most of the model sharing sites will present you with a list of your recently downloaded models when you want to upload a picture of your print, otherwise there’s a good chance you wouldn’t be able to find the thing.

Now if you really liked the model, you might go as far as following the designer. But even then, there would likely be some extenuating circumstances. After all, even the most expertly designed widget is still just a widget, and the chances of that person creating another one that you’d also happen to need seems exceedingly slim. Most of the interactions on these model sharing sites are like two ships passing in the night; it so happened that you and the creator had similar enough needs that you could both use the same printable object, but there’s no telling if you’ll ever cross paths with them again.

Which is why the recent announcements, dropped just hours from each other, that both Thangs and Printables would be rolling out paid subscription services seems so odd. Both sites claim that not only is there a demand for a service that would allow users to pay designers monthly for their designs, but that existing services such as Patreon are unable to meet the unique challenges involved.

Both sites say they have the solution, and can help creators turn their passion for 3D design into a regular revenue stream — as long as they get their piece of the action, that is.

Continue reading “3D Model Subscriptions Are Coming, But Who’s Buying?”

Hexed Home Assistant Monitors 3D Printers

You can babysit your 3D printer 100% of the time, or you can cross your fingers and hope it all works. Some monitor their printers using webcams, but [Simit] has a more stylish method of keeping tabs on six 3D printers.

The idea is to use a 3D printed hex LED display found online. Adding an ESP32 and Home Assistant allows remote control of the display. The printers use Klipper and can report their status using an API called Moonraker. Each hexagon shows the status of one printer. You can tell if the printer is online, paused, printing, or in other states based on the color and amount of LEDs lit. For example, a hex turns totally green when printing is complete.

Once you have a web API and some network-controlled LEDs, it is relatively straightforward to link it together with Home Automation. Of course, you could do it other ways, too, but if you already have Home Automation running for other reasons, why not?

We have seen other ways to do this, of course. If you need an easy monitor, the eyes have it. If you don’t use Klipper, OctoPrint can pull a similar stunt.

Badminton Inspired Heat Shield Aims To Fly This Year

Badminton is not a sport that most of us think about often, and extremely rarely outside of every four years at the summer Olympics and maybe at the odd cookout or beach party here or there. But the fact that it’s a little bit unique made it the prime inspiration for this new heat shield design, which might see a space flight and test as early as a year from now.

The inspiration comes from the shuttlecock, the object which would otherwise be a ball in any other sport. A weighted head, usually rubber or cork, with a set of feathers or feather-like protrusions mounted to it, contributes to its unique flight characteristics when hit with a racquet. The heat shield, called Pridwen and built by Welsh company Space Forge, can be folded before launch and then expanded into this shuttlecock-like shape once ready for re-entry. It’s unlikely this will protect astronauts anytime soon, though. The device is mostly intended for returning materials from the Moon or from asteroids, or for landing spacecrafts on celestial bodies with atmospheres like Mars or Venus.

With some testing done already, Space Forge hopes this heat shield will see a space flight before the close of 2023. That’s not the end of the Badminton inspiration either, though. It’s reported that this device can slow a re-entering craft so much that it can be caught in a net. Not exactly the goal when playing the sport, but certainly a welcome return home for whichever craft might use this system. Of course, getting down from space is only half the battle. Take a look at this other unique spacecraft that goes up in a fairly non-traditional way instead.

My Great-Great-Grandad, The Engineer Who Invented A Coffee Pot

In the study of genealogy it’s common to find people who will go to great lengths involving tenuous cross-links to establish royalty or famous figures such as George Washington or William Shakespeare in their family tree. There’s no royal blood and little in the way of fame to be found in my family tree, but I do have someone I find extremely interesting. One of my great-great-grandfathers was a Scottish engineer called James R Napier, and though his Wikipedia entry hasn’t caught up with this contribution to 1840s technology, he was the inventor of the vacuum coffee pot.

James R NapierHe was born in Glasgow in 1821 and was the son of a successful shipbuilder, Robert Napier, into whose business he followed once he’d received his education. He’s probably most well known today for his work in nautical engineering and for inventing Napier’s Diagram, a method for computing magnetic deviance on compass readings, but he was also a prolific engineer and author whose name crops up in fields as diverse as air engines, weights and measuresdrying timber, and even the analysis of some dodgy wine. The coffee percolator was something of a side project for him, and for us it’s one of those pieces of family lore that’s been passed down the generations. It seems he was pretty proud of it, though he never took the trouble to patent it and and thus it was left to others to profit from that particular invention.

Vacuum Coffee Pots: Impressive, But Slooow

Just what is a vacuum coffee pot, and what makes it special? The answer lies in the temperature at which it infuses the coffee. We take for granted our fancy coffee machinery here in the 21st century, but a century and a half ago the making of coffee was a much simpler and less exact process. Making coffee by simply boiling grounds in water can burn it, imparting bitter flavours, and thus at the time a machine that could make a better cup was seen as of some importance. Continue reading “My Great-Great-Grandad, The Engineer Who Invented A Coffee Pot”