Old Clock Transformed Into Mesmerizing Light Display

It’s easy to find a cheap clock at any dollar store that will manage to tell the time, but chances are that the plastic-fantastic construction won’t do you any aesthetic favors. Fear not, though, for [ROBO HUB]’s upcycled design turns a humble clock into a mesmerizing horological display of beauty.

The build starts by scavenging the movement out of a cheap plastic clock. A CD is then glued to the front of the movement to serve as a reflective backing plate. For numerals, the clock uses F3, F6, F9, and F12 keys nabbed from a keyboard.

The real party trick, though, is in the lighting. This build is elevated beyond hackneyed 90s desk clocks by the inclusion of a ring of LED strip lighting. When switched on, the LED light reflects and refracts on the surface of the CD, creating a mesmerizing shifting pattern featuring all the colors of the rainbow.

CDs are actually quite magical from an optical perspective and have all kinds of nifty uses.

Continue reading “Old Clock Transformed Into Mesmerizing Light Display”

Decoding Compact Disc Audio From Scratch

In the rare case we listen to an audio CD these days, we typically rely on off-the-shelf hardware to decode the 1s and 0s into the dulcet tones of Weird Al Yankovic for our listening pleasure. [Lukas], however, was recently inspired to try decoding the pits and lands of a CD into audio for himself.

A fair bit goes into decoding Red Book digital audio.

[Lukas] did the smart thing, and headed straight to the official Red Book Audio CD standard documents freely available on archive.org. That’s a heck of a lot cheaper than the €345 some publishers want to charge. Not wanting to use a microscope to read the individual pits and lands of the disc, [Lukas] used a DVD player. The electrical signals from the optical pickup were captured with an oscilloscope. 4 megasamples of the output were taken at a rate of 20 megasamples per second. This data was then ported over to a PC for further analysis in Python.

[Lukas] steps us through the methodology of turning this raw data of pits and lands into real audio. It’s a lot of work, and there are some confusing missteps thanks to the DVD player’s quirks. However, [Lukas] gets there in the end and shows that he truly understands how Red Book audio really works.

It’s always interesting to see older media explored at the bare level with logic analyzers and oscilloscopes. If you’ve been doing similar investigative work, don’t hesitate to drop us a line! 

Improve CD Sound By Shaving?

We always enjoy the odd things that people do to try to get better audio reproduction. Exotic cables, special amplifiers, and higher resolution digitization come to mind.  Most of this is dubious, at best, but [Techmoan] brings up something we must have missed back in the day: shaving CDs with a gadget that was marketed as the “CD Sound Improver.” The theory is that bad CD reproduction comes from light scatter of the laser. The solution, according to the maker of this vintage equipment, is to cut a 36-degree bevel to act as a light trap. You can see the gadget in the video below.

The device claims it reduced vibration, improved audio, and even helped DVDs playback better video. As you might imagine, this has little hope of actually working. The box is essentially a motor-driven turntable, a razor blade, and a port for a vacuum cleaner to suck up the mess. You were told to color the edge with a marker, too.

Continue reading “Improve CD Sound By Shaving?”

Retrotechtacular: 1990s CD Mastering Fit For A King

Before it was transformed into an ephemeral stream of ones and zeroes, music used to have a physical form of some kind. From wax cylinders to vinyl discs to tapes of various sizes in different housings and eventually to compact discs, each new medium was marketed as a technological leap over the previous formats, each of which justified incrementally more money to acquire.

But that’s the thing — each purchase resulted in you obtaining a physical item, which had an extensive manufacturing and distribution process behind it. And few artists demanded more manufacturing effort than Michael Jackson in his heyday, as revealed by this in-depth look at the CD manufacturing process for The King of Pop’s release of the HIStory double-disc set in 1995.

The video was produced as sort of a love letter to Michael from the staff and management of the Sony Music disc manufacturing plant in Pittman, New Jersey. The process is shown starting with the arrival of masters to the plant, strangely in the form of U-matic videocassettes; the 3/4″ continuous loop tape was normally used for analog video, but could also be used for recording digital audio. The digital audio is then sent for glass mastering, which is where the actual pits are created on a large glass disc under cleanroom conditions. In fact, much of the production process bears a strong similarity to semiconductor manufacturing, from the need for cleanrooms — although under less stringent conditions than in a fab — to the use of plasma etching, vapor deposition, and metal plating operations.

Once the master stampers are made, things really ramp up in replication. There the stamper discs go into injection molding machines, where hot polycarbonate is forced against the surface under pressure. The copies are aluminized, spin-coated with UV-cure lacquer, and sent on down the line to testing, screen printing, and packaging. Sony hired 40 extra full-time workers, who appear to have handled all the tedious manual tasks like assembling the jewel cases, to handle the extra load of this release.

As cheesy as this thank-you video may be, it was likely produced with good reason. This was a time when a Michael Jackson release was essentially a guarantee of full employment for a large team of workers. The team was able to produce something like 50,000 copies a day, and given that HIStory sold over 20 million copies, that’s a lot of workdays for the good folks at Pittman.

Continue reading “Retrotechtacular: 1990s CD Mastering Fit For A King”

Wooden Disc Player Translates Binary Back Into Text

[jbumstead] used MATLAB to convert the text messages into binary to be cut out of the disk.
[jbumstead] wanted to demonstrate the idea of information-storing devices such as LPs, CDs, and old hard drives. What he came up with lies directly at the intersection of art and technology: an intricately-built machine that plays beautiful collaged wooden disks. Much like the media that inspired the Wooden Disk Player, it uses a laser to read encoded data, which in this case is short bits of text like “Don’t Panic”.

These snippets are stored in binary and read by a laser and photodiode pair that looks for holes and not-holes in the disk. The message is then sent to an Arduino Nano, which translates it into English and scrolls the text on an LED matrix. For extra fun, the Nano plays a MIDI note every time it reads a 1, and you can see the laser reading the disk through a protective acrylic shield.

Though the end result is fantastic, [jbumstead] had plenty of issues along the way which are explored in the build video after the break. We love it when people show us their mistakes, because it happens to all of us and we shouldn’t ever let it tell us to stop hacking.

If anyone knows their way around lasers, it’s [jbumstead]. We loved playing their laser harp at Supercon!

Continue reading “Wooden Disc Player Translates Binary Back Into Text”

The CD Is 40, The CD Is Dead

The Compact Disc is 40 years old, and for those of us who remember its introduction it still has that sparkle of a high-tech item even as it slides into oblivion at the hands of streaming music services.

There was a time when a rainbow motif was extremely futuristic. Bill Bertram (CC BY-SA 2.5)
There was a time when a rainbow motif was extremely futuristic. Bill Bertram (CC BY-SA 2.5)

If we could define a moment at which consumers moved from analogue technologies to digital ones, the announcement of the CD would be a good place to start. The public’s coolest tech to own in the 1970s was probably an analogue VCR or a CB radio, yet almost overnight they switched at the start of the ’80s to a CD player and a home computer. The CD player was the first place most consumers encountered a laser of their own, which gave it an impossibly futuristic slant, and the rainbow effect of the pits on a CD became a motif that wove its way into the design language of the era. Very few new technologies since have generated this level of excitement at their mere sight, instead today’s consumers accept new developments as merely incremental to the tech they already own while simultaneously not expecting them to have longevity.
Continue reading “The CD Is 40, The CD Is Dead”

CD Execution Chamber Sends Old Discs Off With A Bang

Welded steel safety cage? Check! Polycarbonate blast shield? Check! Vacuum cleaner motor wired to an inviting red button? Double check! Stack of CDs to dispose of as destructively as possible? [Firas Sirriyeh] has got you covered with his CD Terminator 1.0.

While [Firas’s] build log is a little short on descriptive text, there’s really no need for it. His pictures tell the tale. The combination media shredder and interactive performance art piece is a stoutly constructed affair, which you’d want anything capable of flinging razor-sharp plastic and Mylar shrapnel to be. [Firas] has displayed his CD execution chamber at the Jerusalem Mini Maker Fair 2015 (in Hebrew; English link) and the Musara Mix Festival where the must-see video after the break was shot (mildly NSFW language). Some CDs give up the ghost very quickly, but one held out for a remarkable long time before finally exploding; you can see it flexing and warping in a way that almost appears to be slow-motion.

For those who’d rather not fuss with all that bothersome safety, there’s always this automatic CD launcher to play with.

Continue reading “CD Execution Chamber Sends Old Discs Off With A Bang”