PCB Gets Weighty Assignment

[Curious Scientist] tried building an integrated strain gauge on a PCB, but ran into problems. Mainly, the low resistance of the traces didn’t show enough change under strain to measure easily. Even placing a proper strain gauge on the PCB had limitations. His new design uses a bridge design to make the change in the gauges usefully large. You can see a video of the project below.

Bridging strain gauges isn’t a new idea. However, the novelty of this design is that the PCB has cantilever beams that facilitate the weighing. Standoffs mount a plate to the beams so that weight on the plate cause deformation on the beam that the strain gauges can measure.

Continue reading “PCB Gets Weighty Assignment”

Open World 3D Game Runs On The RP2040 Microcontroller

The Raspberry Pi RP2040 is versatile and cheap, but it’s by no means known as the most powerful microcontroller on the world. Regardless, it is capable of great things, as demonstrated by [Bernhard Strobl], who built a 3D open world game engine that runs on that very platform.

The graphics are simple, but with a compelling low-poly style.

The game engine itself is built to run on the Pimoroni PicoSystem, which is essentially a handheld gaming platform built around the RP2040 chip. The engine takes advantage of the multi-core nature of the RP2040, using the second core as a dedicated rasterizer to keep frames pumping out.

The basic game [Bernhard] built in the engine features 50 NPC characters and 50 further zombies, all running at the same time. Specs are impressive, with the engine’s included game simulating a “world” of 120 x 120 meters in size. As a maximum limit, the engine can handle a 2.56 x 2.56 km world, thanks to the use of 8-bit integers for directional data. However, limited storage space would make it difficult to achieve such a large world in practice.

We don’t get to see much of the gameplay in the YouTube video, but the quality of the graphics is impressive for such a cheap microcontroller. It seems within the bounds of possibility that an actual open-world game could be practical on the PicoSystem if only enough storage were available. Video after the break.

Continue reading “Open World 3D Game Runs On The RP2040 Microcontroller”

An Open Source PowerPC Notebook Edges Closer

Back in 2020, we reported on the effort to create a brand new open-source laptop platform using the PowerPC architecture. At the time they had big plans and a PCB design, and we’re very pleased to report that in the intervening two years they’ve progressed to the point of now having some real prototypes ready for testing.

Some might question why this should be necessary, after all there are plenty of laptops and more than one commonly available processor platform. But that’s to miss the point of open source hardware, that it’s as much about plurality as functionality. But if you’ve only encountered the PowerPC architecture in slightly older Macs and some game consoles, what’s the chip powering this device? The answer is, not one of those venerable chips, but the NXP T2080, a 1.8 GHz quad-core device that boasts a respectable power for a laptop.

There is of course many a hurdle still to be crossed between prototype and final device, but given the challenge of a functioning laptop it’s impressive for them to have reached this milestone at all. We look forward to seeing further iterations, and maybe, just maybe, a finished device one day. Our original coverage is here.

Card's author typing on the IBM PC110's keyboard, with the Pico W-based card plugged into the PCMCIA slot on the left. PC110's screen shows successful ping 8.8.8.8.8.

Pi Pico W Does PCMCIA, Gets This IBM PC110 Online

Bringing modern connectivity to retro computers is an endearing field- with the simplicity of last-century hardware and software being a double-edged sword, often, you bring a powerful and tiny computer of modern age to help its great-grandparent interface with networks of today. [yyzkevin] shows us a PCMCIA WiFi card built using a Pi Pico W, talking PCI ISA. This card brings modern-day WiFi connectivity to his IBM PC110, without requiring a separate router set up for outdated standards that the typical PCMCIA WiFi cards are limited by.

The RP2040 is made to talk PCI ISA using, of course, the PIO engine. A CPLD helps with PCI ISA address decoding, some multiplexing, and level shifting between RP2040’s 3.3V and the PCI 5 V levels. The RP2040 software emulates a NE2000 network card, which means driver support is guaranteed on most OSes of old times, and the software integration seems seamless. The card already works for getting the PC110 online, and [yyzkevin] says he’d like to improve on it – shrink the design so that it resembles a typical PCMCIA WiFi card, tie some useful function into the Pico’s USB port, and perhaps integrate his PCMCIA SoundBlaster project into the whole package while at it.

This is a delightful project in how it achieves its goal, and a pleasant surprise for everyone who’s been observing RP2040’s PIO engine conquer interfaces typically unreachable for run-of-the-mill microcontrollers. We’ve seen Ethernet, CAN and DVI, along many others, and there’s undoubtedly more to come.

We thank [Misel] and [Arti] for sharing this with us!

Interfacing Broken PS4 Controllers With A Replacement PCB

[Becky] had some PS4 controllers that were sadly no longer functional. However, most of the buttons and joysticks still appeared to be okay. Thus, she set about designing a replacement PCB to breathe new life into these formerly bricked gamepads.

In the case of the PS4 controller, most of the buttons are of a membrane type, that talk to the main board inside via a series of contacts on a flex cable. Thus, [Becky] designed her PCB to interface with that to read most of the buttons. A breadboard and an LED came in handy to figure out which pads corresponded to which buttons on the controller. Replacement joysticks were sourced off Amazon to solder directly on to the replacement PCB.

[Becky] also took advantage of Fusion 360’s design tools to 3D print a simulcra of the final design. This helped get the fit just right inside the gamepad’s shell. Continue reading “Interfacing Broken PS4 Controllers With A Replacement PCB”

PC Hardware Monitor Uses Tricorder-Derived Tech

The visually striking hardware monitor that [Mangy_Dog] recently put together for his new custom PC build might look like something out of the Alien franchise, but the hardware he’s built it around actually comes from a very different science-fiction property: Star Trek. Or at least, from a very impressive line of Star Trek props, anyway.

Given the incredible amount of time and effort that [Mangy_Dog] has put into developing his Star Trek: Voyager tricorder, it’s no surprise that he would decide to reuse its graphics chip and microcontroller. But while the familiar hardware might have helped jump-start this build, this was no weekend project.

He’s steadily been working on it for several months now, and even entered it into the 2022 Sci-Fi Contest back in April. Obviously he wasn’t able to complete it before the Contest deadline, but looking at the final results, we’re happy to see he kept chugging away at it.

Of course, with a project like this, the hardware is only half the battle. In the video below, [Mangy_Dog] explains the challenges involved in creating not only the firmware that runs on the monitor, but the accompanying PC-side application. This included modifying existing libraries to add support for the device’s unique flash storage arrangement, and pulling the relevant system status information out of the operating system and into a series of customizable widgets.

As impressive as the project is, [Mangy_Dog] says he’s not done yet. A second revision of the hardware and software will address several issues and add new capabilities, and considering the high degree of polish we’ve come to expect from his creations, we’re not surprised

Continue reading “PC Hardware Monitor Uses Tricorder-Derived Tech”

Hackaday Podcast 180: Tiny CRTs, Springy PCBs, And Measuring Trees

The demogorgon just wants to be friends. See? He’s waving hello.

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos traded sweat for silence, recording from their respective attic-level offices in the August heat unaided by fans (too noisy). We decided there’s no real news this week that lacks a political bent, except maybe that Winamp is back with a new version that’s four years in the making. (Is Winamp divisive?) Does it still whip the llama’s ass? You be the judge.

After Elliot gives Kristina a brief math lesson in increasing area with regard to 3D printer nozzle sizes, we talk a bit about 3D pens, drool over a truly customizable macropad that uses a microcontroller for each keyswitch, and  discuss dendrometers and tree health. Then it’s back to keyboards for one incredible modular build with an e-ink display and haptic feedback knob which is soon to go open source.

Finally, we talk tiny CRTs, a USB drive that must have the ultimate in security through obscurity, discuss the merits of retrograde clocks, and wonder aloud about the utility of jumping PCBs. Don’t bounce on us just yet — not until you hear about our first electronics wins and learn the one thing Kristina doesn’t do when she’s spending all day in the heat.

Direct download. And listen with Winamp!

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 180: Tiny CRTs, Springy PCBs, And Measuring Trees”