Color Organ Dress, A Wearable With Audio Feedback

There is a huge amount of interest among our community in wearable electronics, but it is fair to say that it is a technology that has a way to go at our level in terms of its application. Some twinkly LEDs are all very well, but unless you have the arrived-on-a-spaceship-from-the-future aesthetic of someone like [Naomi Wu] to carry them off they get old rather quickly.

What the sew-on LED sector of wearable electronics is waiting for are some applications, wearable lights that do something rather than just look pretty. And [Moko] has a project that takes them in that direction, with her color organ dress, a garment whose LEDs react to ambient sound with the aid of a MEMS microphone and an Adafruit Gemma M0 microcontroller board. The LEDs form a color wheel which rotates, and stops at a point proportional to the sound level at the time.

The write-up is an interesting one, going into a little detail as it does in the images on the construction of an electronically-enhanced piece of clothing. Wiring everything up is one thing, but there are other considerations such as the incorporation of extra panels to protect them from mechanical stress, and from sweat. From a dressmaker’s perspective it’s a well constructed garment in its own right with an attractive PCB-style pattern (Where did she get that fabric? Or did she print it herself?) and it appears that she’s the fortunate owner of a serger (overlocker).

Well-assembled clothing has made it here before, for example an impressive jellyfish skirt or this laser-cut arcsin dress. And should you wish to make a garment for your next wearable project, you’ll be sure to need a well-stocked textile bench.

A Callout: Parts For An Iron Lung

Polio was a disease that devastated the United States in the 1950s, but with concerted efforts towards vaccination, is now on the verge of eradication. With the disease a distant memory for most, it’s easy to miss the fact that there are still those suffering the effects of the disease decades after its initial strike.

The iron lung was an invention that helped keep thousands of sufferers alive, by breathing for those who had lost the ability through the degenerative effects of the disease. A small handful of people are still relying on those machines today, and there’s a problem – who is around to keep these machines running?

The story is a powerful one, made up of interviews with those who still rely on their machines on a daily basis to stay alive. Particularly poignant is Lillard’s account of the repairman who came to fix her machine, and tried to leave before putting it back together. As someone who needs the machine operational to survive, this obviously wasn’t going to cut it.

Overall, these are people who have relied on help from friends, neighbours, and local tinkerers to help keep their machines running long after the companies responsible have long stopped supporting the hardware. This has led to an unenviable situation for Lillard herself – she’s no longer able to purchase replacement collars that seal her neck to the machine, as the subsidiary of Phillips responsible only has ten left in the country and will no longer sell to her. Naomi Wu and others are organising on Twitter to find a way to remanufacture these parts. If you’re in the know, or otherwise have the expertise, get involved or throw your ideas down in the comments.

It’s not the first time we’ve heard dark stories of medical equipment from years past – the story of the Therac-25 is particularly chilling.

[via Gizmodo]

3D Printing On The Subway; Or Anywhere Else!

3D-Printed wearable electronics are on the rise, however our own [Naomi Wu] flipped it around and made a wearable 3D printer which not only is portable but also manufactures on the move!

The project starts with a baby carrier that was locally purchased, and the extra fat was trimmed off leaving behind only the primary harness and square frame. This square frame is left intact to provide stability to the mounted printer as well as some level of comfort to the wearer. [Naomi] then drills a number of new holes in the delta printer in question, of which fortunately the top is made of plastic. Using swivel screws and long screws, the upper part connects with the harness. The receptacle clamp for the upper part is 3D-printed as well, and provides a modular rigid fixture for the machine.

The lower part also uses a 3D-printed triangular base that has a slot for the carrier frame which attaches with the bottom part of the delta using screws. The project is powered via two 3 Ah batteries that are kept in place behind the printer using custom clamps made with PLA. The whole project works on the move, as demonstrated by [Naomi] in the video below.

From dissecting the baby carrier to puncturing holes in a harness using a screwdriver heated by a blow torch, this project has a lot of DIY in it. For those looking for a more productive motorised wearable, check out Adding Haptic Feedback For The Disabled. Continue reading “3D Printing On The Subway; Or Anywhere Else!”

Lu Ban’s Axe And Working With Your Chinese Suppliers

It is nearly impossible to build any kind of hardware these days without at some point in the process dealing with China — Chinese suppliers, and so by extension Chinese culture. Difficulties can be as simple as the usual inconvenience of everything stopping for weeks up to and after Chinese New Year, or engineers that you know to be otherwise reasonably competent simply choosing not to bring up glaring and obvious problems. Having encountered my share of Western hardware entrepreneurs on the verge of a breakdown, and just as many flummoxed Chinese bosses completely unable to see exactly why they’re so upset, I thought I’d try to offer at least a little insight into one of the many issues that comes up.

Nearly any school child in the world will be able to tell you whom they were taught invented the lightbulb, the telephone, the radio transmitter. Those same children will usually be able to tell you of at least a few Chinese inventions as well — gunpowder, paper, the compass etc. But with one key difference, even the Chinese children are unlikely to be able to credit even a group of people for their invention let alone a single (usually misattributed) individual.

China does not really have an Edison, or Tesla, or Bell — oh we’ve had people as brilliant, but they are not celebrated in quite the same way for cultural reasons. If you were to do an alternate history of China where we went through the Industrial Revolution first, you’d want to split the timeline around Mozi (墨子). The Mohists (followers of Mozi) had advanced siege engine design, schools of logic, mathematics and theory for the physical sciences. much of the same foundation that set the West on its particular trajectory. In the end, Confucian ideals won out and China became a culture that celebrated scholarship over ingenuity (to vastly oversimplify things).

Even our respective terms for engineer reflect this. The word engineer (Latin ingeniator) is derived from the Latin words ingeniare (“to contrive, devise”) and ingenium (“cleverness”). Yet in Chinese 工程师, the first character for engineer in Chinese is the carpenters square 工. He or she is a simple worker (工人 literally “Work Person”). Even now, engineers are not held in anywhere near the same regard in China as they are in the West.

Continue reading “Lu Ban’s Axe And Working With Your Chinese Suppliers”

Friday Hack Chat: Making In Shenzhen

China is an amazing land of opportunity, and if you want to build anything, you can build it in Shenzhen. This city that was just a small fishing village a few decades ago has grown into a cyberpunk metropolis of eleven million and has become the manufacturing capital of the world. You’re probably reading this on a device made somewhere around Shenzhen.

For this week’s Hack Chat, we’re going to be talking about manufacturing in Shenzhen. We’re bringing in a very special guest for this one: [Naomi Wu] is a Cantonese DIY maker, professional web dev, transhumanist, electronics reviewer, occasional Hackaday contributor, vlogger, 3D printerer, advocate of women in STEM, SexyCyborg, and a riot on Twitter. [Naomi] also lives and works in Shenzhen, and is tapped into the DIY and maker culture there. She’s created 3D printed pen testing shoes, a Raspberry Pi cosmetics case, and infinity skirts.

This Friday (or Saturday, depending on which side of the date line you’re on), [Naomi] is going to be talking about manufacturing, making, DIY, and Shenzhen culture. Of particular interest will be electronics purchasing and manufacturing in Shenzhen, designing wearable projects with an emphasis on power and thermal design, documenting projects, and Shenzhen culture. This is basically an AMA, so if you have any questions you’d like to ask, throw them up in this spreadsheet.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. Hack Chats are usually at noon, Pacific time on Friday. This week we’re doing the Hack Chat a little later, because timezones. This week’s Hack Chat will be at 6 pm PDT Friday / 9 am CST Saturday. Confused? Here’s a time and date converter!

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Make A Bit Of Cloth With This 3D Printable Loom

When the hackspace where this is being written created their textile room, a member who had previously been known only for her other work unexpectedly revealed herself to be a weaver, and offered the loan of a table-top loom. When set up, it provided an introduction to the art of weaving for the members of all different interests and backgrounds, and many of them have been found laying down a few lines of weft. It’s a simple yet compelling piece of making which  captivates even people who might never have considered themselves interested in textiles.

If you are not lucky enough to have a friendly hackspace member with a spare loom when you wish to try your hand at weaving, you may be interested in this Thingiverse project, a 3D printable rigid heddle loom. It’s not the most complex of looms, the heddle is the part that lifts the warp threads up and down, and it being the rigid variety means that this loom can’t do some of the really fancy tricks you’ll see on other types of loom. But it’s a functional loom that will allow you to try your hand at weaving for the expenditure of not a lot of money, some 3D printer filament, and some PVC pipe. If your hackspace or bench has an area devoted to textiles, it may find a place.

We’ve shown you a few looms on these pages over the years, but mostly of the more mechanised variety. A Raspberry Pi automated loom for example, or a CNC Jacquard loom.

Thanks to our Shenzhen contributor-at-large, [Naomi Wu] for the tip.