Inside An Edison Phonograph

If you think of records as platters, you are of a certain age. If you don’t remember records at all, you are even younger. But there was a time when audio records were not flat — they were drums, which was how the original Edison phonograph worked. [Our Own Devices] did a video earlier showing one of these devices, but since it was in a museum, he didn’t get to open it up. Lucky for us, he now has one of his own, and we get to see inside in the video below.

Ironically, Edison was deaf yet still invented the phonograph. While he did create the working phonograph — his self-identified most important invention — the original invention wasn’t commercially viable. You could record and playback audio on tin foil wrapped around a drum. But you couldn’t remove the foil without destroying it.

Continue reading “Inside An Edison Phonograph”

A Parts Bin MIDI Controller In 24 Hours

Part of the reason MIDI has hung on as a standard in the musical world for so long is that it is incredibly versatile. Sure, standard instruments like pianos and drums can be interfaced with a computer fairly easily using this standard, but essentially anything can be converted to a MIDI instrument with the right wiring and a little bit of coding. [Jeremy] needed to build a MIDI controller in a single day, and with just a few off-the-shelf parts he was able to piece together a musical instrument from his parts bin.

The build is housed in an off-brand protective case from a favorite American discount tool store, but the more unique part of the project is the choice to use arcade buttons as the instrument’s inputs. [Jeremy] tied eight of these buttons to an Arduino Uno to provide a full octave’s worth of notes, and before you jump to the comments to explain that there are 12 notes in an octave, he also added a button to the side of the case to bend any note when pressed simultaneously. An emergency stop button serves as a master on/off switch and a MIDI dongle on the other side serves as the interface point to a computer.

After a slight bit of debugging, the interface is up and running within [Jeremy]’s required 24-hour window. He’s eventually planning to use it to control a custom MIDI-enabled drum kit, but for now it was fun to play around with it in some other ways. He’s also posted the project code on a GitHub page. And, if this looks a bit familiar, this was not [Jeremy]’s first MIDI project. He was also the creator of one of the smallest MIDI interfaces we’ve ever seen.

Continue reading “A Parts Bin MIDI Controller In 24 Hours”

Mining And Refining: Lead, Silver, And Zinc

If you are in need of a lesson on just how much things have changed in the last 60 years, an anecdote from my childhood might suffice. My grandfather was a junk man, augmenting the income from his regular job by collecting scrap metal and selling it to metal recyclers. He knew the current scrap value of every common metal, and his garage and yard were stuffed with barrels of steel shavings, old brake drums and rotors, and miles of copper wire.

But his most valuable scrap was lead, specifically the weights used to balance car wheels, which he’d buy as waste from tire shops. The weights had spring steel clips that had to be removed before the scrap dealers would take them, which my grandfather did by melting them in a big cauldron over a propane burner in the garage. I clearly remember hanging out with him during his “melts,” fascinated by the flames and simmering pools of molten lead, completely unconcerned by the potential danger of the situation.

Fast forward a few too many decades and in an ironic twist I find myself living very close to the place where all that lead probably came from, a place that was also blissfully unconcerned by the toxic consequences of pulling this valuable industrial metal from tunnels burrowed deep into the Bitterroot Mountains. It didn’t help that the lead-bearing ores also happened to be especially rich in other metals including zinc and copper. But the real prize was silver, present in such abundance that the most productive silver mine in the world was once located in a place that is known as “Silver Valley” to this day. Together, these three metals made fortunes for North Idaho, with unfortunate side effects from the mining and refining processes used to win them from the mountains.

Continue reading “Mining And Refining: Lead, Silver, And Zinc”

Digital Audio Workstation In A Box

Although it’s still possible to grab a couple of friends, guitars, and a set of drums and start making analog music like it’s 1992 and there are vacant garages everywhere yearning for the sounds of power chords, the music scene almost demands the use of a computer now. There are a lot of benefits, largely that it dramatically lowers the barrier to entry since it greatly reduces the need for expensive analog instruments. It’s possible to get by with an impressively small computer and only a handful of other components too, as [BAussems] demonstrates with this tiny digital audio workstation (DAW).

The DAW is housed inside a small wooden box and is centered around a Behringer JT-4000 which does most of the heavy lifting in this project. It’s a synthesizer designed to be as small as possible, but [BAussems] has a few other things to add to this build to round out its musical capabilities. A digital reverb effects pedal was disassembled to reduce size and added to the DAW beneath the synthesizer. At its most basic level this DAW can be used with nothing but these components and a pair of headphones, but it’s also possible to add a smartphone to act as a sequencer and a stereo as well.

For a portable on-the-go rig, this digital audio workstation checks a lot of the boxes needed including MIDI and integration with a computer. It’s excellent inspiration for anyone else who needs a setup like this but doesn’t have access, space, or funds for a more traditional laptop- or desktop-centered version. For some other small on-the-go musical instruments we recently saw a MIDI-enabled keyboard not much larger than a credit card.

Hackaday Podcast Episode 284: Laser Fault Injection, Console Hacks, And Too Much Audio

The summer doldrums are here, but that doesn’t mean that Elliot and Dan couldn’t sift through the week’s hack and find the real gems. It was an audio-rich week, with a nifty microsynth, music bounced off the moon, and everything you always wanted to know about Raspberry Pi audio but were afraid to ask. We looked into the mysteries of waveguides and found a math-free way to understand how they work, and looked at the way Mecanum wheels work in the most soothing way possible. We also each locked in on more classic hacks, Elliot with a look at a buffer overflow in Tony Hawks Pro Skater and Dan with fault injection user a low-(ish) cost laser setup. From Proxxon upgrades to an RC submarine to Arya’s portable router build, we’ve got plenty of material for your late summer listening pleasure.

Worried about attracting the Black Helicopters? Download the DRM-free MP3 and listen offline, just in case.

Continue reading “Hackaday Podcast Episode 284: Laser Fault Injection, Console Hacks, And Too Much Audio”

Hackaday Podcast Episode 280: TV Tubes As Amplifiers, Smart Tech In Sportsballs, And Adrian Gives Us The Fingie

Despite the summer doldrums, it was another big week in the hacking world, and Elliot sat down with Dan for a rundown. Come along for the ride as Dan betrays his total ignorance of soccer/football, much to Elliot’s amusement. But it’s all about keeping the human factor in sports, so we suppose it was worth it. Less controversially, we ogled over a display of PCB repair heroics, analyzed a reverse engineering effort that got really lucky, and took a look at an adorable one-transistor ham transceiver. We also talked about ants doing surgery, picking locks with nitric acid, a damn cute dam, and how to build one of the world’s largest machines from scratch in under a century. Plus, we answered the burning question: can a CRT be used as an audio amplifier? Yes, kind of, but please don’t let the audiophiles know or we’ll never hear the end of it.

Worried about attracting the Black Helicopters? Download the DRM-free MP3 and listen offline, just in case.

Continue reading “Hackaday Podcast Episode 280: TV Tubes As Amplifiers, Smart Tech In Sportsballs, And Adrian Gives Us The Fingie”

Retrotechtacular: Ford Model T Wheels, Start To Finish

There’s no doubt that you’ll instantly recognize clips from the video below, as they’ve been used over and over for more than 100 years to illustrate the development of the assembly line. But those brief clips never told the whole story about just how much effort Ford was forced to put into manufacturing just one component of their iconic Model T: the wheels.

An in-house production of Ford Motors, this film isn’t dated, at least not obviously. And with the production of Model T cars using wooden spoked artillery-style wheels stretching from 1908 to 1925, it’s not easy to guess when the film was made. But judging by the clothing styles of the many hundreds of men and boys working in the River Rouge wheel shop, we’d venture a guess at 1920 or so.

Production of the wooden wheels began with turning club-shaped spokes from wooden blanks — ash, at a guess — and drying them in a kiln for more than three weeks. While they’re cooking, a different line steam-bends hickory into two semicircular felloes that will form the wheel’s rim. The number of different steps needed to shape the fourteen pieces of wood needed for each wheel is astonishing. Aside from the initial shaping, the spokes need to be mitered on the hub end to fit snugly together and have a tenon machined on the rim end. The felloes undergo multiple steps of drilling, trimming, and chamfering before they’re ready to receive the spokes.

The first steel component is a tire, which rolls down out of a furnace that heats and expands it before the wooden wheel is pressed into it. More holes are drilled and more steel is added; plates to reinforce the hub, nuts and bolts to hold everything together, and brake drums for the rear wheels. The hubs also had bearing races built right into them, which were filled with steel balls right on the line. How these unsealed bearings were protected during later sanding and grinding operations, not to mention the final painting step, which required a bath in asphalt paint and spinning the wheel to fling off the excess, is a mystery.

Welded steel spoked wheels replaced their wooden counterparts in the last two model years for the T, even though other car manufacturers had already started using more easily mass-produced stamped steel disc wheels in the mid-1920s. Given the massive infrastructure that the world’s largest car manufacturer at the time devoted to spoked wheel production, it’s easy to see why. But Ford eventually saw the light and moved away from spoked wheels for most cars. We can’t help but wonder what became of the army of workers, but it probably wasn’t good. So turn the wheels of progress.

Continue reading “Retrotechtacular: Ford Model T Wheels, Start To Finish”