“You Had One Job”, Bot

Only a Human would understand the pithy sarcasm in “You had one job”. When [tterev3]’s RopeBot the Robot became sentient and asked “What is my purpose?”, [tterev3] had to lay it out for him quite bluntly – “You cut the rope”. He designed RopeBot (YouTube video embedded below) for one job only – single mission, single use.

A couple of years back, [tterev3] had put up some thick ropes for a low ropes course in his backyard. Over time, the trees grew up, and the ropes became embedded in the tree trunks. Instead of risking his own life and limbs to try cutting them down, he designed RopeBot to do the job for him. It’s built from scavenged electronics and custom 3D printed parts. A geared motor driving a large cogged pulley helped by two smaller, idler wheels helps the bot to scurry up and down the rope. A second geared motor drives a cam reciprocating mechanism, similar to industrial metal cutting saws. A common utility knife is the business end of the bot, helping slice through the rope. A radio receiver and controller is the brains of the bot which drives the two motors through a motor driver board. The remote controller, assembled on a piece of foam, has three switches for Up, Down and Cut. Everything is held together on the 3D printed frame and tied down with a generous use of zip ties, with rubber bands providing spring tension where needed. When the rope has been cut, the RopeBot comes down for a smashing end. It might not look fancy, but it gets the job done. We spy some real ball bearings on the three pulleys meaning [tterev3] didn’t skimp on good design just because it’s a disposable robot. Obviously, he spent a fair amount of time and effort in designing RopeBot.

Once the job is done, most of the electronics and hardware can be recovered and used again while the 3D printed parts could be recycled, making this a really cost-effective way of handling the problem. Like the Disposable Drones we covered earlier, these kind of “use and discard” robots not only make life easier for Humans, but also ensure low economic and ecological impact.

Continue reading ““You Had One Job”, Bot”

Hand-Wound Brushless Motors Revive Grounded Quad

You’re happily FPVing through the wild blue yonder, dodging and jinking through the obstacles of your favorite quadcopter racing course. You get a shade too close to a branch and suddenly the picture in your goggles gets the shakes and your bird hits the dirt. Then you smell the smoke and you know what happened – a broken blade put a motor off-balance and burned out a winding in the stator.

What to do? A sensible pilot might send the quad to the healing bench for a motor replacement. But [BRADtheRipper] prefers to take the opportunity to rewind his burned-out brushless motors by hand, despite the fact that new ones costs all of five bucks. There’s some madness to his method, which he demonstrates in the video below, but there’s also some justification for the effort. [Brad]’s coil transplant recipient, a 2205 racing motor, was originally wound with doubled 28AWG magnet wire of unknown provenance. He chose to rewind it with high-quality 25AWG enameled wire, giving almost the same ampacity in a single, easier to handle and less fragile conductor. Plus, by varying the number of turns on each pole of the stator, he’s able to alter the motor’s performance.

In all, there are a bunch of nice tricks in here to file away for a rainy day. If you need to get up to speed on BLDC motor basics, check out this primer. Or you may just want to start 3D printing your own BLDC motors.

Continue reading “Hand-Wound Brushless Motors Revive Grounded Quad”

Amazon Gets A Patent For Parachute Labels

Delivery by drone is a reality and Amazon has been pursuing better and faster methods of autonomous package delivery. The US Patent and Trademark Office just issued a patent to Amazon for a shipping label that has an embedded parachute to ensure soft landings for future deliveries.

The patent itself indicates the construction consisting of a set of cords and a harness and the parachute itself is concealed within the label. The label will come in various shapes and sizes depending upon the size of the package and is designed to “enable the workflow process of shipping and handling to remain substantially unchanged”. This means they are designed to look and be used just like a normal printed label.

The objective is to paradrop your next delivery and by the looks of the patent images, they plan to use it for everything from eggs to the kitchen sink. Long packages will employ multiple labels with parachutes which will then be monitored using the camera and other sensors on the drone itself to monitor descent.

The system will reduce the time taken per delivery since the drone will no longer have to land and take off. Coupled with other UAV delivery patents, Amazon may be looking at more advanced delivery techniques. With paradrops, the drone need not be a multi rotor design and the next patent may very well be a mini trajectory correction system for packages.

If they come to fruition we wonder how easy it will be to get your hands on the labels. Materials and manufacture should both be quite cheap — this has already been proven by the model rocket crowd, and to make the system viable for Amazon it would have to be put into widespread use which brings to bear an economy of scale. We want to slap them on the side of beer cans as an upgrade to the catapult fridge.

Soft-legged Robot Handles Rough Terrain With Ease

Whether it’s wheels, tracks, feet, or even a roly-poly body like BB-8, most robots have to deal with an essential problem: dirt and grit can get into the moving bits and cause problems. Some researchers from UCSD have come up with a clever way around this: pneumatically actuated soft-legged robots that adapt to rough terrain.

At a top speed of 20 mm per second, [Michael Tolley]’s squishy little robot won’t set any land speed records. But for applications like search and rescue or placing sensors in inhospitable or inaccessible locations, slow and steady might just win the race. The quadrupedal robot’s running gear can be completely 3D-printed on any commercial printer capable of using a soft filament. The legs each contain three parallel air chambers within a bellowed outer skin; alternating how the chambers are inflated controls how they move. The soft legs adapt to unstructured terrain and are completely sealed, eliminating intrusion problems. The video below shows how the bot gets around just fine over rocks and sand.

The legs remind us a little of our [Joshua Vazquez]’s tentacle mechanism, but with fewer parts. Right now, the soft robot is tethered to its air supply, but the team is working on a miniaturized pump to make the whole thing mobile. At which point we bet it’ll even be able to swim.

Continue reading “Soft-legged Robot Handles Rough Terrain With Ease”

Mitosis: Anatomy Of A Custom Keyboard

Ergonomic. Wireless. Low-latency. Minimalist. Efficient. How far do you go when you design your own open-source keyboard? Checking off these boxes and providing the means for others to do so, Redditor [reverse_bias] presents the Mitosis keyboard, and this thing is cool.

The custom, split– as the namesake implies — mechanical keyboard has 23 keys on each 10 cm x 10 cm half, and, naturally, a custom keymapping for optimal personal use.

Upper and lower PCBs host the keys and electronic circuits respectively, contributing to the sleek finished look. Key caps and mechanical switches were ripped from sacrificial boards: two Waveshare core51822 Bluetooth modules are used for communication, with a third module paired with a Pro Micro make up the receiver. Continue reading “Mitosis: Anatomy Of A Custom Keyboard”

Hackaday Prize Entry: Sub Gigahertz RF

For all the press WiFi and Bluetooth-connected Internet of Things toasters get, there’s still a lot of fun to be had below one Gigahertz. For his Hackaday Prize entry, [Adam] is working on an open source, extensible 915 and 433 MHz radio designed for robotics, drones, weather balloons, and all the other fun projects that sub-Gigaherts radio enables.

The design of this radio module is based around the ADF7023 RF transceiver, a very capable and very cheap chip that transmits in the usual ISM bands. The rest of the circuit is an STM32 ARM Cortex M0+, with USB, UART, and SPI connectivity, with support for a battery for those mobile projects.

Of course, you can just go out and buy an ISM radio, but that’s not really the point of this project. [Adam] has come up with an excellent board here, all designed in KiCad, all while flexing his RF muscle. There are RF shields here, too, so it’s far more than just a design challenge, this is an assembly and sourcing problem as well. It’s a great project, and an excellent example of what we’re looking for in The Hackaday Prize.

Exposing Dinosaur Phone Insecurity With Software Defined Radio

Long before everyone had a smartphone or two, the implementation of a telephone was much stranger than today. Most telephones had real, physical buttons. Even more bizarrely, these phones were connected to other phones through physical wires. Weird, right? These were called “landlines”, a technology that shuffled off this mortal coil three or four years ago.

It gets even more bizarre. some phones were wireless — just like your smartphone — but they couldn’t get a signal more than a few hundred feet away from your house for some reason. These were ‘cordless telephones’. [Corrosive] has been working on deconstructing the security behind these cordless phones for a few years now and found these cordless phones aren’t secure at all.

The phone in question for this exploit is a standard 5.8 GHz cordless phone from Vtech. Conventional wisdom says these phones are reasonably secure — at least more so than the cordless phones from the 80s and 90s — because very few people have a duplex microwave transceiver sitting around. The HackRF is just that, and it only costs $300. This was bound to happen eventually.

This is really just an exploration of the radio system inside these cordless phones. After taking a HackRF to a cordless phone, [Corrosive] found the phone technically didn’t operate in the 5.8 GHz band. Control signals, such as pairing a handset to a base station, happened at 900 MHz. Here, a simple replay attack is enough to get the handset to ring. It gets worse: simply by looking at the 5.8 GHz band with a HackRF, [Corrosive] found an FM-modulated voice channel when the handset was on. That’s right: this phone transmits your voice without any encryption whatsoever.

This isn’t the first time [Corrosive] found a complete lack of security in cordless phones. A while ago, he was exploring the DECT 6.0 standard, a European cordless phone standard for PBX and VOIP. There was no security here, either. It would be chilling if landlines existed anymore.

Continue reading “Exposing Dinosaur Phone Insecurity With Software Defined Radio”