Digital Clock Goes With The Grain

This good-looking clock appears to be made out of a block of wood with LED digits floating underneath. In reality, it is a block of PLA plastic covered with wood veneer (well, [androkavo] calls it veneer, but we think it might just be a contact paper or vinyl with a wood pattern). It makes for a striking effect, and we can think of other projects that might make use of the technique, especially since the wood surface looks much more finished than the usual 3D-printed part.

You can see a video of the clock in operation below. The clock circuit itself is nothing exceptional. Just a MAX7218 LED driver and a display along with an STM32 ARM processor. The clock has a DHT22 temperature and humidity sensor, as well as a speaker for an alarm.

Continue reading “Digital Clock Goes With The Grain”

Retrotechtacular: The Transistor (1953 Film)

If we cast our minds back to the early years of the transistor, the year that is always quoted is 1947, during which a Bell Labs team developed the first practical germanium point-contact transistor. They would go on to be granted the Nobel Prize for their work in 1956, but the universal adoption of their invention was not an instantaneous process. Instead there would be a gradual change from vacuum to solid state that would span the 1950s and the 1960s, and even in the 1970s you might still have found mainstream devices on sale containing vacuum tubes.

First point contact transistor via kasap3

To speed up this process, Bell Labs made every effort to publicize their invention. Thus we come to our subject today, their 1953 publicity film The Transistor, in which the electronics industry of the era is described and how each part of it might revolutionize by the transistor is laid out.

We start with a look at a selection of electronic components, among which are a few transistors. The point contact device is already described as superceded by the junction transistor, but as well as those two we are shown a phototransistor and a junction tetrode, a now-obsolete design that had two base connections.

Unexpectedly we don’t dive straight into the world of transistors, but take a look back at the earlier years of the century to the development of vacuum electronics. We’re taken through the early development  and operation of vacuum tubes, then their use in long-distance radio communications, through the advent of electronics in mass entertainment, and finally into the world of radar and microwave links. Only then do we return to the transistor, with a posed shot of [John Bardeen], [William Shockley], and [Walter Brattain] hard at work in a lab. The merits of the transistor as opposed to the tube are then set out, though we can’t help wondering whether they have confused a milliwatt and a microwatt when they describe the transistor as requiring only a millionth of a watt to operate.

Continue reading “Retrotechtacular: The Transistor (1953 Film)”

Chocolate Factory Simulation Makes Bars With LEGO

[Michael Brandl] got to visit the Milka chocolate factory in Bludenz, Austria and was inspired to build this simulation of the production process for the LEGO world 2017 event in Copenhagen.

The process begins with the empty mold riding on a double row of tank treads. Subsequent modules seem to fill the mold with LEGO ingredients, cool the bars, and remove them from the mold. The last two steps rock: [Michael] built a dispenser that drops a tiny cardboard box onto the line, sized to hold 3 LEGO bars. The box rolls to the end of the line and is picked up by a pneumatic gripper that picks up the box and places it on a pallet.

While more whimsical than the LEGO liquid handler we featured recently, there are a lot of interesting robotic techniques to be learned here. On the reverse angle video you can see more of what’s going on with the wiring of the various motors and sensors. There are six EV3 bricks scattered along the length of the assembly line. The bricks control 15 small motors, 2 large motors, 7 touch sensors, and 3 light sensors. [Michael] added some nice touches, like the combo of two color sensors, seen around 1:45 of the reverse angle video, possibly used to keep the factory operations synced.

Check out [Michael’s] Mindstorms sendup of [Anouk Wipprecht’s] drink bot dress. The LEGO version was built for Robotexotica. In addition, he has a lot of projects featured on his site.

Continue reading “Chocolate Factory Simulation Makes Bars With LEGO”

Chess Set From Car Parts

Chess has been around for an awfully long time, automobiles less so. However, there’s no reason the two can’t be combined, like in this chess set fashioned from automotive components.

The project was made as a gift, and is the sort of thing that’s quite accessible for an interested maker to attempt at home. Parts used to build the set include valves, valve springs, spark plugs, castellated nuts and pipe fittings. As the parts don’t actually need to be in good working condition, a haul like this could likely easily be had for less than $50 from the local pull-it-yourself wrecking yard — or free if you know a mechanic with some expired engines lying around.

The metalworking side of things involves trimming down and welding together the parts, before polishing them up and applying a coat of paint to create the white and black, or in this case, gold and black pieces.

Overall, it’s a fun weekend project that could be tackled in any number of ways depending on your creativity and taste. For a different take, check out this 3D laser cut chess set.

Sega’s Game Gear Gets A Video Output

[EvilTim] dug deep into a classic system to finally give the Game Gear a proper video output.  The Game Gear was Sega’s answer to Nintendo’s Gameboy. Rushed to market, the Game Gear reused much of the hardware from the very popular Master System Console. The hardware wasn’t quite identical though – especially the cartridge slot. You couldn’t play Game Gear games on a Master System, and the game gear lacked an AV output, which meant gamers were stuck playing on a small fluorescent backlit LCD screen.

[EvilTim] wanted to play some of those retro titles on a regular TV using the original hardware. To accomplish this he had to start digging into the signals driving the Game Gear’s LCD. The Master System lineage was immediately apparent, as Game Gear’s LCD drive signals were similar in timing to those used to drive a TV. There was even a composite sync signal, which was unused on in the Game Gear.

[EvilTim] first designed a circuit using discrete ’74 series logic which would convert the LCD drive signals to SCART RGB. Of note is the construction technique used in this circuit. A tower of three 74HC374 chips allows [EvilTim] to create R, G, and B outputs without the need for a complex circuit board.

As pretty as a three-story chip tower is, [EvilTim] knew there was a better way. He re-spun the circuit with a 32 macrocell CPLD. This version also has an NTSC and PAL video encoder so those without a SCART interface can play too. If you’re not up to building your own, [EvilTim] sells these boards on his website.

We’ve seen some incredible retro gaming hacks over the years. From a NES inside a cartridge to incredible RetroPi builds. Hit the search bar and check it out!

A Tube AM Transmitter In A Soup Can

A standard early electronics project or kit has for many years been the construction of a small broadcast transmitter with enough power to reach the immediate area, but no further. These days that will almost certainly mean an FM broadcast band transmitter, but in earlier decades it might also have been for the AM broadcast band instead.

The construction of a small AM transmitter presents some interesting problems for an electronic designer. It is extremely easy to make an AM transmitter with a single transistor or tube, but it is rather more difficult to make a good one. The modulation has to be linear across the whole amplitude range, and its effect must not pull the frequency of the oscillator and cause FM distortion.

It’s a task [Joe Sousa] has tackled, with his one tube AM transmitter in a Campbell’s soup can. His write-up of the transmitter contains a full description of the problems he faced, and how his design overcomes them. His oscillator is a cathode follower, with the tube biased in class A mode to ensure as undistorted a sine wave oscillation as possible. Modulation is provided through the suppressor grid of the pentode tube he’s using.

The completed transmitter is mounted inside the iconic soup can, with the mains transformer mounted on a removable bottom plate. There is a provision for both loop and wire antennas to be connected.

It is probable that this transmitter falls under the so-called “Part 15” rules for unlicenced low-power broadcasting in the USA, however it should be borne in mind that not every territory has this provision. If you build this transmitter, make sure you’re not going to attract the interest of your local equivalent of the FCC.

This article should have whetted your appetite for tiny broadcast transmitters. How about comparing the one here with a full-sized model?

Thanks [2ftg] for the tip.

Hackaday Links Column Banner

Hackaday Links: May 28, 2017

Boeing and DARPA are building a spaceplane. Right now it’s only a press release and a few concept images, but it looks like this is an air-launched system kind of like a Tristar/Pegasus, only much higher and completely unmanned. It’s a ton and a half to low earth orbit, with a goal of 10 flights in 10 days.

Up in Albany? There’s a new hacker con happening in a few weeks. Anycon is a hacking, infosec, and cyber security conference happening June 16 & 17th in Albany, NY. The organizers of this con ([Chris], and his company Leet Cybersecurity) are loosely modeling this con after Derbycon. [Dave Kennedy] of TrustedSec will be attending as the keynote speaker.

GOOD NEWS! [Casey Neistat] is under investigation by the FAA. [Casey Neistat] is the YouTuber that flies drones right in the middle of the Hudson River corridor, and is a menace to general aviation around NYC.

This is neat. The Supplyframe Design Lab is the Hackaday Mothership right in the middle of Pasadena where we host our designers in residence, host a few meetups, and slowly fill every cubic inch of space with either dust or tools. The Design Lab just won a design award. You can check out the ‘design’ part of the Design Lab here, but keep in mind it will never be that clean ever again.

Here’s an interesting Twitter to follow. Alitronik is a curator of the weird and wonderful cheap crap that can be found on AliExpress. Need an Altera Cyclone dev board? Here you go. A desk-mountable OLED inspection microscope? Done. A seven dollar Tesla coil? Dude, you can totally fit this inside a hat.

[Drygol] had a nice old Commodore C16 with a broken TED chip. A shame, really. He did what anyone would do: put a C64 motherboard in the case for a fancy stealth upgrade.

Is the great crowdfunded 3D printer boom over? Some would say that ship sailed after dozens of 3D printer crowdfunding projects failed to deliver, or delivered very low-quality machines. These people were wrong. This Polaroid-branded 3D printing pen might not get funding. A year ago, this project would have been funded on day one. There would have been writeups in The Verge on how Polaroid is turning the corner after decades of wasted opportunities. Now, the Crowdfunded 3D printer boom is finally over.

The Hackaday crew was at the Bay Area Maker Faire last weekend and holy crap did we have a blast. Everyone came to the meetup on Saturday except for the fire marshall. The secret OSHPark bringahack on Sunday was even more impressive. We also saw a Donkey Car capable of driving around a track autonomously, but the team behind it didn’t have their work up on the Internet at the time.