Rise Of Hardware: A PCH Hackathon

Over the weekend, I had the pleasure of helping out at the KW Hackathon in Waterloo, Ontario, sponsored by PCH Hardware, who hosts hackathons and meetups around the world to help inspire invention and entrepreneurship. This was the sixth hardware based hackathon they have hosted.

When they host a hackathon, they gather local sponsors and provide the tools and resources for the entrants to actually develop a working prototype in less than 54 hours, that they then can pitch to a panel of judges to win some awesome prizes. Did we mention it’s free to register? The next one is in London, England.

Personally, I provided some mentorship in product design and development, but more importantly, I opened up the use of my giant laser cutter to help the teams create real prototypes, and learn more about rapid prototyping using a laser cutter. Everyone wanted to 3D print their prototypes at first — but there was a limited number of printers available, and long wait times. We introduced them to sites like www.makercase.com, a site that will generate laser cutter plans for enclosures that you specify the dimensions of, and of course, the ability to search google for “laser cut arduino case” to find pre-designed laser designs for electronics.

Some teams more experienced in CAD got creative and made cool decahedrons which actually helped create a working prototype the way they envisioned it on paper.

PCH-Hackathon-for-Communitech-Day-2-496

In addition to the main event, they hosted keynote speakers and workshops to help take teams ideas even further — we think Communitech (the hosting venue) really summed up the purpose of having hackathons nicely:

“Useful stuff does really emerge from hackathons: some realized ideas, but more importantly, new human hacker connections and a deeper sense of capability and our capacity to create beyond the software realm.”

Overall, the event was fantastic, and it makes us wish there were more like it. You could feel the buzz of excitement in the room when creative people got together and started designing and making things. Oh and the free food was pretty awesome too — especially for students.

For more information about the event, check out the news piece by [Darin White] for Communitech News.

Microcassette Recorders Become A Tape Delay

Long before audio engineers had fancy digital delays, or even crappy analog delays, there were tape delays. Running a tape around in a loop with a record and play head is the basis of the Echoplex and Space Echo, and both of these machines are incredible pieces of engineering.

Microcassette recorders are not, in general, incredible pieces of engineering. They do, however, have a strip of magnetic tape, a record head, and a play head. Put two of them together, and you can build your own tape delay.

The basic principle of a tape delay is simple enough – just run a loop of tape round in a circle, through a record and playback head, record some audio, and send the output to an amplifier. In practice, it’s not that simple. [dogenigt] had to manufacture his own tape loop from microcassettes, a process that took far too long and was far too finicky.

For a control circuit, [dogenigt] is using four audio pots and one linear pot for speed control. The audio pots are responsible for input gain, feedback, the amplitude of the clean signal, and the output of the signal after it’s been run through the delay.

Apart from being one of those builds that’s very dependent on the mechanical skill of the builder, it’s a pretty simple delay unit, with all the electronics already designed for a stripboard layout. You can hear an example of what it sounds like below.

Continue reading “Microcassette Recorders Become A Tape Delay”

It’s A Sega It’s A Nintendo! It’s… Unique!

Before the days of the RetroPie project, video game clones were all the rage. Early video game systems were relatively easy to duplicate and, as a result, many third-party consoles that could play official games were fairly common. [19RSN007] was recently handed one of these clones, and he took some pretty great strides to get this device working again.

The device in question looks like a Sega Genesis, at least until you look closely. The cartridge slot isn’t quite right and the buttons are also a little bit amiss. It turns out this is a Famicom (NES) clone that just looks like a Sega… and it’s in a terrible state. After a little bit of cleaning, the device still wasn’t producing any good video, and a closer inspection revealed that the NOAC (NES-on-a-Chip) wasn’t working.

Luckily, [19RSN007] had a spare chip and was able to swap it out. The fun didn’t stop there though, as he had to go about reverse-engineering this chip pin-by-pin until he got everything sorted out. His work has paid off though, and now he has a video game system that will thoroughly confuse anyone who happens to glance at it. He’s done a few other clone repairs as well which are worth checking out, and if you need to make your own NES cartridges as well, we’ve got you covered there, too.

Hackaday Prize Entry: Tearing Down A Tesla

We’ve seen a few people tear down the drive trains from electric vehicles like the Nissan Leaf, Prisuses, or the Chevy Volt. We’ve also seen someone tear down the battery pack found in a Tesla Model S. What we haven’t seen until now is a reverse engineering of the Tesla Model S drive train.

A fortuitous circumstance landed [Michal] the crown jewel of the Tesla Model S – the 310kW, 590Nm drive train. Exactly how and where [Michal] landed this gigantic powerful motor is a question that remains unanswered, and the question unasked. We might not want to know.

Now that he has a motor, the name of the game is figuring out how to drive it. Usually that means capturing data from the CAN bus and replaying that data. This isn’t what [Michal] is doing; instead, he’s using a motor controller he developed for the Chevy Volt and Toyota Prius. It’s going to be a lot of work, but that’s only because these gigantic EV motors and controllers are pretty rare on the used market now. Give it a few years, and the work [Michal] is putting in now will pay off in hundreds of DIY electric vehicles.


The 2015 Hackaday Prize is sponsored by:

Ask Hackaday (And Adafruit): The New CEO Of MakerBot

Just a few years ago, MakerBot was the darling of the Open Hardware community. Somehow, in the middle of a garage in Brooklyn, a trio of engineers and entrepreneurs became a modern-day Prometheus, capturing a burgeoning technology into a compact, easy to use, and intoxicating product. A media darling was created, a disruptive technology was popularized, and an episode of the Colbert Report was taped.

The phrase ‘meteoric rise’ doesn’t make sense, and since then the reputation of MakerBot has fallen through the floor, crashed through the basement, and is now lodged in one of the higher circles of hell. It’s not surprising; MakerBot took creations from their 3D object hosting site, Thingiverse, and patented them. The once-Open Source line of 3D printers was locked up behind a closed license. The new MakerBot extruder – the Smart Extruder – is so failure prone MakerBot offers a three pack, just so you’ll always have a replacement on hand. False comparisons to Apple abound; Apple contributes to Open Source projects. The only other way for a company to lose the support of the community built around it so quickly would be a name change to Puppy Kickers, LLC.

In the last few months, figurehead CEO of MakerBot [Bre Pettis] was released from contractual obligations, and MakerBot’s parent company, Stratasys, has filled the executive ranks with more traditional business types. It appears PR and Marketing managers have noticed the bile slung at their doorstep, and now MakerBot is reaching out to the community. Their new CEO, [Jonathan Jaglom] specifically requested a hot seat be built at Adafruit for an open discussion and listening meeting. Yes, this means Makerbot is trying to get back on track, winning the hearts and minds of potential customers, and addressing issues Internet forums repeat ad nauseam.

If you’ve ever wanted to ask a CEO how they plan to stop screwing things up, this is your chance. Adafruit is looking for some direction for their interview/listening meeting, and they’re asking the community for the most pressing issues facing the 3D printing community, the Open Source community, and MakerBot the company.

Already on the docket are questions about MakerBot and Open Source, MakerBot’s desire to put DRM in filament, the horrors of the Smart Extruder and the 5th generation MakerBots, problems with Thingiverse, and the general shitty way MakerBot treats its resellers.

This isn’t all Adafruit wants to ask; the gloves are off, nothing is off the table, and they’re looking for questions from the community. What would you like to ask the MakerBot CEO?

Personally, the best interview questions are when the interviewee’s own words are turned around on them. By [Jonathan Jaglom]’s own admission, the barrier to entry for 3D design work has been substantially lowered in the last three years, ostensibly because of incredible advances in Open Source projects. Following this, do MakerBot and Stratasys owe a debt to Open Source projects, and should Stratasys contribute to the rising tide of Open Source development?

That’s just one question. There will, of course, be many more. Leave them down in the comments. “You are not [Tim Cook],” while a valid statement in many respects, is not a question.

Mini Arc Furnace Melts Its Way Into Our Hearts

[Grant Thompson], aka “The King of Random,” threw caution to the wind when it came to his latest awesome project – a mini electric arc furnace (EAF) (YouTube link). [Grant] uses a refractory brick as a furnace and crucible for the molten metal.  He wears eye protection and a respiratory mask as he cuts up the brick – a good idea, since you don’t want to inhale any of that dust. The electrode grips are made with things you can find at a hardware store, including copper wire and coupling, and 2 pairs of vice-grip style pliers. The copper wire is stripped and attached to the metal handle of the pliers using hose clamps. The pliers are now functional electrode grips- just put a carbon rod in each grip and hold them close to each other…but not without protection! [Grant] harvested the carbon rods  from the cells of 6V lantern batteries – dead batteries work just as well for this. It’s also a better bet to do this outdoors with decent ventilation and away from anything flammable. [Grant] realized that the rods from the batteries have a wax-like coating on them that takes about 30 seconds to burn off in spectacular flames the first time they make electrical contact. However, you can purchase carbon rods by themselves if you want to avoid ripping open batteries and possibly setting yourself on fire. The mini EAF runs on a welding power supply [Grant] made from microwave oven transformers  (YouTube link).

When it’s time to melt some metal, the scrap metal is placed into a bowl drilled into the brick. Using the electrode grips, the carbon rods are placed into the brick’s pre-drilled holes. It only takes ten seconds to melt pure zinc – do NOT do this with galvanized steel or brass castings, as zinc oxide is very hazardous to your health.

In the videos featured below, [Grant] shows a variety of metals are no match for his mini EAF. He even manages to melt rocks from his backyard! It goes without saying that an EAF (video link) can be very dangerous. When you’re dealing with high voltage, plasma, white-hot molten metal, and toxic fumes, you better know what you’re doing (or have a great life insurance policy). [Grant] has a penchant for showcasing projects that can make an OSHA inspector cringe,  but you have to admire his gumption!

Continue reading “Mini Arc Furnace Melts Its Way Into Our Hearts”

A Game Pad For The Apple II

[Quinn Dunki] has been hard at work building a Teddy Top – an Apple IIc Plus modified for a road warrior. It has a 3.5 inch disk drive, runs at a blistering four megahertz, and has a beautiful integrated color LCD. It would be a shame to have such a great machine and no way to play games as they were intended, so [Quinn] set about building a game pad for her lovable Apple II.

The Apple II joystick port isn’t as simple as an Atari or Commodore joystick port. Where the bog-standard Atari joystick is basically just a bunch of switches connected to pins, the Apple II joystick is analog. Weird, and even weirder is the value of the pots in these joysticks: 150kΩ. Somehow or another, nobody makes pots in this value any more. Luckily the hardware in these joysticks is well documented, and shoehorning in modern components isn’t that bad.

The Apple joystick has a bit of circuitry – a 556 timer chip that reads the values of each pot and converts that into a stream of 0s and 1s for the Apple. The joystick [Quinn] found for her game pad is an analog thumb stick on a neat breakout board manufactured by Parallax. This analog joystick has 10kΩ pots in it, and that just won’t work with the 556 timer chip. However, since this is just resistors and a 556 chip, adjusting some of the values on the original schematics does the trick. [Quinn] added a few capacitors to her circuit, and everything worked beautifully.

With the electronics down, she turned her attention to the case for her Apple II road warrior enclosure. She recently picked up a 3D printer, which means she’s new to 3D printing. After spending a few hours designing a controller in 123D Design, she sent the files over to the printer. Warping happened. She tried an ABS slurry. The part was stuck to the bed. It took a few tries (purple glue sticks are awesome, [Quinn]), but she eventually got her plastic enclosure printed out, and the circuitry installed. The result is a portable computer, with a custom controller, playing Lode Runner. Can’t beat that.