Automatic Audio Leveling Circuit Makes Scanning More Fun

alan-scope1

[Alan’s] friend came to him with a problem. He loved listening to his scanner, but hated the volume differences between stations. Some transmitters would be very low volume, others would nearly blow his speakers. To solve the problem, [Alan] built up a quick automatic leveling circuit (YouTube link) from parts he had around the lab.

[Alan’s] calan-scope2ircuit isn’t new, he states right in the video that various audio limiting, compressing, and automatic gain control circuits have been passed around the internet for years. What he’s brought to the table is his usual flair for explaining the circuits’ operation, with plenty of examples using the oscilloscope. (For those that don’t know, when [Alan] isn’t building circuits for fun, he’s an RF applications engineer at Tektronix).

Alan’s circuit is essentially an attenuator. It takes speaker level audio in (exactly what you’d have in a desktop scanner) and outputs a limited signal at about 50mv peak to peak, which is enough to drive an auxiliary amplifier. The attenuator is made up of a resistor and a pair of 1N34A Germanium diodes. The more bias current applied to the diodes, the more they will attenuate the main audio signal. The diode bias current is created by a transistor-based peak detector circuit driven off the main audio signal.
But don’t just take our word for it, watch the video after the break.

Continue reading “Automatic Audio Leveling Circuit Makes Scanning More Fun”

Xkcd’s Virus Aquarium Made Real

A surprising number of projects here are in some way influenced by the webcomic xkcd, but usually not as directly as this. Comic 350, “Network” is the tale of a very odd stickman who keeps multiple VMs running an unprotected, old version of Windows. Between the VMs, they have virtually every virus and are, effectively, a computer virus aquarium.

Now it’s a real thing, and best of all, it’s open to the Internet for normal humans to view, complete with screencaps of all seven nodes updated every 30 seconds, the ability to view all processes on each node, and anyone on the Internet can upload any file to a node. All the files uploaded to the nodes are executed, so you get to see in real-time what the effects of “1TB_of_porn_this_took_a_while_to_upload.exe” are on node 3.

The idea of a virus aquarium is cool, but this actually gets much, much more interesting when the project metas itself. Every 24 hours, a virus scanner runs on each node. As of right now, all the nodes are clean making this not a virus aquarium, but a script kiddie aquarium. On at least one node, TeamViewer is running but your guess is as good as mine as to how anyone will get that working.

Continue reading “Xkcd’s Virus Aquarium Made Real”

WiFinder Is A Python Driven Roommate Warning System

WiFinder

We’ve all been there. Your roommate is finally out of the house and you have some time alone. Wait a minute… your roommate never said when they would be back. It would be nice to be warned ahead of time. What should you do? [Mattia] racked his brain for a solution to this problem when he realized it was so simple. His roommates have been warning him all along. He just wasn’t listening.

Most Hackaday readers probably have a WiFi network in their homes. Most people nowadays have mobile phones that are configured to automatically connect to these networks when they are in range. This is usually smart because it can save you money by not using your expensive 4G data plan. [Mattia] realized that he can just watch the wireless network to see when his roommates’ phones suddenly appear. If their devices appear on the network, it’s likely that they have just arrived and are on their way to the front door.

Enter wifinder. Wifinder is a simple Python script that Mattia wrote to constantly scan the network and alert him to new devices. Once his roommates are gone, Mattia can start the script. It will then run NMap to get a list of all devices on the network. It periodically runs NMap after this, comparing the new host list to the old one. If any new devices show up, it alerts with an audible beep and a rather hilarious output string. This type of scanning is nothing new to those in the network security field, but the use case is rather novel.

Fold-out Laser Cutter Prototype Promises Portability (But Maybe Not Safety)

 

fold out laser cutter

Often times it’s tricky to make space for a full size laser cutter… so a group of friends over at Pittsburgh TechShop have been working on designing a fold-out version for easy storage. It’s still a prototype/proof of concept, so we’ll overlook the obvious safety concerns for now.

It’s built predominately out of aluminum extrusion and a few custom machined parts. A 40W CO2 laser tube sits in the back with optics reflecting it out to the laser head. The X-axis pivots on a heavy duty hinge mechanism and then locks in place for use. Unfortunately there are no videos of it in action, but the whole arm-linkage is apparently quite rigid and robust.

Like we said, this is one of their first prototypes or proofs of concept — as they continue to enhance the design they are considering taking it to Kickstarter down the road. They plan on enclosing the beam path in order to make it safe, and we’ll certainly be interested to see how that works out!

For more info on the project, there’s a thread on Reddit going strong.

[Thanks Ollie!]

$250; Pushing The Limit On Cheap (And Functional) CNC Machine Builds

 

$250 cnc machine - rotary tool

Cost is always a drawback and a hurdle when buying or building a CNC Machine, especially when building it just for fun or hobby. [Eric] was able to cobble together a working 3-axis rotary tool based machine for about $250, a few trips to the hardware store and a bunch of time.

The machine design is loosely based on this one he found on Instructables. [Eric] chose this style because he felt the boom supported tool would have been more stable and easier to build than a gantry style machine. Skate bearings, HDPE sliders and c-channel aluminum were used to support the XY table instead of traditional linear bearings and rails. All three axes are driven with stepper motors and 1/4″-20 threaded rods. The Harbor Freight dremel-style rotary tool helps keep the overall cost down.

Continue reading “$250; Pushing The Limit On Cheap (And Functional) CNC Machine Builds”

Rubik’s Cube Solver Made Out Of Popsicle Sticks And An Arduino

rubix cube solver

[Matt] recently learned both how to solve a Rubik’s cube and the basics of an Arduino. Putting the two together, he decided to try his hand at making an automatic Rubik’s Cube solver!

We’ve seen this done quite a few times using LEGO Mindstorms, but we’re much more impressed with [Matt’s] clever use of popsicle sticks and mechanical linkages…. The device uses just two servos. One to rotate the base, and the second to flip the cube over.

He’s using an Arduino UNO (R3) with 2 Hitec HS-311 hobby servos, some popsicle sticks, hot glue, a paper towel roll, and a bit of plywood. He wrote the code to solve the cube himself, and has shared it on GitHub — but he didn’t stop there and decided to create a GUI to go with it using Python.

It’s not that fast, but it’ll solve a cube in about 20 minutes — stick around after the break to see it in action!

Continue reading “Rubik’s Cube Solver Made Out Of Popsicle Sticks And An Arduino”

Wait, THAT’S An Electric Guitar?

Mechatronic Guitar

What you’re looking at above is a six-stringed mechatronic slide guitar, where each string and associated servos is assigned its own MIDI channel.

It’s a project [Jim Murphy] has been working on for a while now, and technically, it’s the second iteration — he’s calling it the Swivel 2. The original Swivel was more of a proof of concept, using bulky stepper motors and solenoids — in this one he’s upgraded to hobby style servos, using four per string. One to change the pitch, one to clamp the pitch shifter, and two to pick and dampen the strings.

He’s designed the PCB control boards himself utilizing an Arduino bootloader-equipped ATMEGA328, which takes in the MIDI signal from a computer and moves the servos accordingly — to produce the audio signals he’s been using Ableton Live to write the patterns.

The entire setup was designed in 3D CAD and is designed to be completely modular. He’s even made the guitar pickups himself using 3D printed spools, and hand wrapping the coils with copper enamel wire. Lend an ear after the break to hear it in action.

Continue reading “Wait, THAT’S An Electric Guitar?”