PortableSDR Makes It To Kickstarter

Last year’s Hackaday Prize saw a lot of projects that were crying out to be Kickstarter Campaigns, but non has seen people throwing money at their screens quite like [Michael]’s PortableSDR. It’s a small, handheld, battery-powered shortwave software defined transceiver that can do just about everything with coverage up to 30MHz. It’s the ultimate apocalypse radio, a contender for to the throne now held by the ‘my first radio’ Baofeng, and now, finally, a campaign on Kickstarter.

The PortableSDR (now called the PSDR) started off as [Michael]’s ideal radio. It just so happened the Hackaday Prize gave him the impetus design, develop, and build the radio that would eventually land him third place in The Hackaday Prize.

The radio itself is completely self-contained and battery-powered, implementing a software defined radio on an STM32F4 processor. The design includes an LCD for the waterfall display, vector network analysis, and the ability to receive GPS.

In keeping with its ham heritage, [Michael] is offering the PSDR as a kit, with a PCB, enclosure, and all the parts you can’t get on Digikey available for a $250 pledge. Get those toaster reflow ovens warm, because there’s a lot of SMD parts in this build.

Continue reading “PortableSDR Makes It To Kickstarter”

Keystroke Sniffer Hides As A Wall Wart, Is Scary

For those of us who worry about the security of our wireless devices, every now and then something comes along that scares even the already-paranoid. The latest is a device from [Samy] that is able to log the keystrokes from Microsoft keyboards by sniffing and decrypting the RF signals used in the keyboard’s wireless protocol. Oh, and the entire device is camouflaged as a USB wall wart-style power adapter.

The device is made possible by an Arduino or Teensy hooked up to an NRF24L01+ 2.4GHz RF chip that does the sniffing. Once the firmware for the Arduino is loaded, the two chips plus a USB charging circuit (for charging USB devices and maintaining the camouflage) are stuffed with a lithium battery into a plastic shell from a larger USB charger. The options for retrieving the sniffed data are either an SPI Serial Flash chip or a GSM module for sending the data automatically via SMS.

The scary thing here isn’t so much that this device exists, but that encryption for Microsoft keyboards was less than stellar and provides little more than a false sense of security. This also serves as a wake-up call that the things we don’t even give a passing glance at might be exactly where a less-honorable person might look to exploit whatever information they can get their hands on. Continue past the break for a video of this device in action, and be sure to check out the project in more detail, including source code and schematics, on [Samy]’s webpage.

Thanks to [Juddy] for the tip!

Continue reading “Keystroke Sniffer Hides As A Wall Wart, Is Scary”

LeslieSnubber

Organ Donor Gives Up A Leslie Speaker

It was about ten years ago that [Richard] received an old musical organ. Moving to a new house meant it would be cumbersome to move the organ with him, so he opted to harvest some interesting components instead. Specifically, he kept the Leslie speaker.

A Leslie speaker is a special kind of speaker mechanism that creates a tremolo effect as well as a vibrato effect. You can hear this effect in [Richard’s] video below. Simple effects like this would be easy to do on a computer nowadays, but that wasn’t the case several decades ago. Before digital electronics, musical effects were often performed by analog means. [Richard’s] Leslie speaker is a small speaker behind of a Styrofoam baffle. The baffle spins around the speaker which changes the reflection angle of the sound, producing the musical effect.

[Richard] tried hooking this speaker up to other musical instruments but found that turning off the electric motor created an audible pop over the speakers. To remedy this, he build a simple “snubber” circuit. The circuit is just a simple 240 ohm resister and a 0.05 uF capacitor. These components give the transients a path to ground, preventing the pops and clicks when the motor is powered up. Now [Richard] can use this classic piece of audio equipment for newer projects. Continue reading “Organ Donor Gives Up A Leslie Speaker”

Helicarrier

Lego Avengers Assemble To The Helicarrier!

The massive engineering-defying Helicarrier from the Avengers is a brilliant work of CGI. Too bad it’d never actually fly… Like… Never.

Luckily, that didn’t stop our favorite RC hackers over at FliteTest from making a scale model of it — that actually works! If you’re not familiar, the Helicarrier is a fictional ship, the pride of S.H.I.E.L.D’s air force, or is it their navy.

It’s a massive aircraft carrier with four huge repulsor engines built into it, borrowing tech from Stark Industries. The shear size of it is what makes it completely ridiculous, but at the same time, it’s also unbelievably awesome.

Unfortunately, repulsor technology doesn’t seem to exist yet, so the FliteTest crew had to settle with a set of 8 brushless outrunner motors, with two per “engine”. The whole thing is almost 6′ long.

It doesn’t handle that well (not surprising!) but they were able to launch another RC  plane off of it, mid-flight! Landing however… well you’ll have to watch the video. Continue reading “Lego Avengers Assemble To The Helicarrier!”

BLDC Controller With The Teensy 3.1

[Will] is on the electric vehicle team at Duke, and this year they’re trying to finally beat a high school team. This year they’re going all out with a monocoque carbon fiber body, and since [Will] is on the electronics team, he’s trying his best by building a new brushless DC motor controller.

Last year, a rule change required the Duke team to build a custom controller, and this time around they’re refining their earlier controller by making it smaller and putting a more beginner-friendly microcontroller on board. Last years used an STM32, but this time around they’re using a Teensy 3.1. The driver itself is a TI DRV8301, a somewhat magical 3 phase 2A gate driver.

The most efficient strategy of driving a motor is to pulse the throttle a little bit and coast the rest of the time. It’s the strategy most of the other teams in the competition use, but this driver is over-engineered by a large margin. [Will] put up a video of the motor controller in action, you can check that out below.

Continue reading “BLDC Controller With The Teensy 3.1”

MagnID – Sneaky New Way Of Interacting With Tablets

New magnetic tech dubbed “MagnID” is being presented this weekend at Stanford’s annual TEI conference. It is a clever hack aimed to hijack a tablet’s compass sensor and force it to recognize multiple objects. Here is a sneak peek at the possibilities of magnetic input for tablets.

Many tablets come with some sort of triaxial magnetic sensor but as [Andrea] and [Ian]’s demo shows, they are only capable of passing along the aggregate vector of all magnetic forces. If one had multiple magnetic objects, the sensor is not able to provide much useful information.

Their solution is a mix of software and hardware. Each object is given a magnet that rotates at a different known speed. This creates complex sinusoidal magnetic fields that can be mathematically isolated with bandpass filters. This also gives them distance to each object. The team added an Arduino with a magnetometer for reasons unexplained, perhaps the ones built into tablets are not sufficient?

The demo video below shows off what is under the hood and some new input mechanics for simple games, sketching, and a logo turtle. Their hope is that this opens the door to all manner of tangible devices.

Check out their demo at Standford’s 9th annual “Tangible, Embedded, Embodied Interaction” this January 15-19, 2015.

Continue reading “MagnID – Sneaky New Way Of Interacting With Tablets”