Give Your Projects A Retro Tint With This 8051-based Arduino Uno

Most of us are familiar with the Arduino Uno, a starting place for electronics projects since 2010. But what if the Arduino Uno was released in 1980? You’d probably get something like [ElectroBoy]’s 8051-based Arduino Uno.

28-pin DIP integrated circuit with a window revealing the die
Close-up shot of the 87C752, an 8051 with EPROM

The Arduino Uno-compatible board has an MCS-51 (often called 8051 instead) instead of the usual ATmega328P/ATmega168. Specifically, [ElectroBoy] uses the AT89S52. Like the ATmega microcontrollers, the AT89S52 has an 8-bit CPU with a Harvard architecture and very similar GPIO capabilities. Unlike the ATmega, however, the original MCS-51 has a CISC CPU (as opposed to ATmega being RISC) and a release date about 36 years earlier.

The board itself also has some differences from the original Arduino Uno. First of all, it has a USB type-C port, which is definitely a bonus. Secondly, it’s simpler: No USB-UART (which also means no USB programming), a different pin layout (Arduino shields likely won’t fit) and more I/Os than the ATmegas have. Sure, it’s not as practical as an actual Arduino Uno, but it’s definitely cool for our retrocomputing nerds.

An Apple ][ With A Pendulum

Clocks are a favourite project here, and we can say we’ve seen all conceivable types over the years. Just a software clock on a retrocomputer perhaps isn’t the coolest among them, but [Willem van der Jagt ]’s Apple][ clock has a little bit extra. It takes its time reference from a real pendulum, on an antique wall clock.

A proximity sensor next to a metal pendulum gives an easy way to generate a digital pulse on each pass, but leaves the question of how to transfer it to the computer. With computers of this age the circuitry is surprisingly simple, and in this case he’s sending an interrupt to the machine which the software can pick up for its timing. There is a small logic circuit between the sensor and the interrupt allowing him to gate the pendulum line, triggered from one of the output lines exposed on the Apple’s game port.

The code is written in assembly, and counts the number of pendulum swings before incrementing the number of minutes. It’s an enjoyable reminder of the days when the architecture of a computer was this accessible, and for those of us whose past lies in the Sinclair world it’s also been a little peek into something of how the Apple works.

We think this is the first pendulum-driven retrocomputer clock we’ve seen here at Hackaday, as you might understand when a clock has a pendulum it’s usually a more traditional design.

Biomedical Engineering Hack Chat

Join us on Wednesday, February 7 at noon Pacific for the Biomedical Engineering Hack Chat with Nyeli Kratz!

Although medical doctors and engineers generally work in completely different domains, there’s a fair amount of overlap between the disciplines. At the end of the day, they both solve problems, and while doctors clearly focus on the biological aspects of disease, there just might come a point where the problem has to be addressed with engineering principles. From the intricate design of an artificial hip to the electrical interface between an amputee’s nervous system and a prosthetic limb, biomedical engineers can make a tremendous contribution to positive patient outcomes.

join-hack-chatNyeli Kratz, a recent biomedical engineering grad, has worked on quite a few engineering solutions to diseases. Many of her projects, like this stand-up mobility aid or a wheelchair attachment that lets a tetraplegic father interact with his newborn child, seem aimed at making it easier for patients to interact with the world. She’ll stop by the Hack Chat to talk about these projects in particular as well as what the engineer brings to the table when it’s time to design hardware that heals.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 7 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Hackaday Europe 2024 Is On, And We Want You!

Hackaday Europe is on again for 2024, and we couldn’t be more excited! If you’re a European hacker, and have always wanted to join us up for Supercon in the states, here’s your chance to do so without having to set sail across the oceans. It’s great to be able to get together with our continental crew.

Just like last time, we’ll be meeting up in Berlin at Motionlab, Bouchestrasse 12 for a weekend of talks and workshops. On paper, the event runs April 13th and 14th, but if you’re in town on Friday the 12th, we’ll be going out for drinks and socializing beforehand. Saturday starts up at 9 AM and is going to be full of presentations, with food throughout and our own mix of hacking and music running until 2 AM. Sunday starts up a little bit later with brunch and as many lightning talks as we can fit into the afternoon.

And as always, we want you to bring a project or two along to show and tell. Half the fun of an event like this, where everyone is on the same wavelength, is the mutual inspiration that lurks in nearly every random conversation. It’s like Hackaday, but in real life!

So without further ado: get your tickets right here! We have a limited number of early-bird tickets at $70, and then the remainder will go on sale for $142 (plus whatever fees).

Call for Participation

So who is going to be speaking at Hackaday Europe? You could be! We’re also opening up the Call for Participation right now, both for talks and for workshops. Whether you’ve presented your work live before or not, you’re not likely to find a more appreciative audience for epic hacks, creative constructions, or you own tales of hardware, firmware, or software derring-do.

Workshop space is limited, but if you want to teach a group of ten or so people your favorite techniques or build up a swarm of small robots, we’d love to hear from you.

All presenters get in free, of course, and we’ll give you an early-bird price even if we can’t fit you into the schedule. So firm up what you’d like to share, and get your proposal in before Feb 22.

The Badge

Part of the fun of an event like this is sharing what you’re working on with a rare like-minded crowd. True story: we came into last year’s Hackaday Berlin event with a raw idea for our own Superconference badge, that we needed to have done by November. Talks with [Schneider] about the lovely badge for the Chaos Communications Camp inspired us to use those sweet round screens, and a chat with [Stefan Holzapfel] convinced us of the possibility to run an audio DAC at DC.

So it’s fitting that we’ll be bringing the Vectorscope badge to Berlin, with some new graphics of course. If you didn’t catch it at Supercon, it’s a emulation of an old-timey X-Y mode oscilloscope and a DAC to drive it in software. Folks had a great time hacking it at Supercon, and you will too. It’s analog, it’s digital, and it’s got room for a lot of art. We’d love to see what you bring to it!

Thanks and See You Soon!

Of course, we can’t put on an event like this without help from our fantastic sponsors, so we’d like to say thanks to DigiKey for sponsoring not only the stateside Superconference, but also Hackaday Europe 2024. And as always, thanks to Supplyframe for making it all possible.

April is coming up fast, so get your proposals in and order your tickets now! We can’t wait to see you all.

Building Robots With A 20×20 Grid

On autonomous robots, the most difficult challenges usually lie in the software and electronic realms, but the mechanics can also be very time consuming. To help address this challenge, [Nikodem Bartnik] is working on the Open Robotic Platform (ORP), a modular robotics chassis system designed to make prototyping as easy and affordable as possible. Video after the break.

The ORP is governed by a set of design rules to maintain interchangeability. Most of the design rules are very open, but the cornerstone of ORP is its standardized mounting plates featuring a 20 mm grid pattern of 3.5 mm mounting holes. These plates can be stacked using connecting rods, creating a versatile foundation upon which various components can be mounted.

[Nikodem] is on a mission to create and collect an entire library of these modular components. From custom 3D-printed holders that accommodate sensors, motors, wheels and dev boards to homemade PCBs that snap directly onto the chassis, everything to get your robot rolling as soon as possible. While manufacturing methods and materials are not limited, 3D printing and laser cutting will likely be the most popular manufacturing technologies for making your own parts.

Continue reading “Building Robots With A 20×20 Grid”

Arctic Adventures With A Data General Nova II — The Equipment

As I walked into the huge high bay that was to be my part-time office for the next couple of years, I was greeted by all manner of abandoned equipment haphazardly scattered around the room. As I later learned, this place was a graveyard for old research projects, cast aside to be later gutted for parts or forgotten entirely. This was my first day on the job as a co-op student at the Georgia Tech Engineering Experiment Station (EES, since renamed to GTRI). The engineer who gave me the orientation tour that day pointed to a dusty electronic rack in one corner of the room. Steve said my job would be to bring that old minicomputer back to life. Once running, I would operate it as directed by the radar researchers and scientists in our group. Thus began a journey that resulted in an Arctic adventure two years later.

The Equipment

The computer in question was a Data General (DG) mini computer. DG was founded by former Digital Equipment Corporation (DEC) employees in the 1960s. They introduced the 16-bit Nova computer in 1969 to compete with DEC’s PDP-8. I was gawking at a fully-equipped Nova 2 system which had been introduced in 1975. This machine and its accessories occupied two full racks, with an adjacent printer and a table with a terminal and pen plotter. There was little to no documentation. Just to turn it on, I had to pester engineers until I found one who could teach me the necessary front-panel switch incantation to boot it up. Continue reading “Arctic Adventures With A Data General Nova II — The Equipment”

Starlink’s Inter-Satellite Laser Links Are Setting New Record With 42 Million GB Per Day

Slide from the SpaceX Starlink presentation on mesh routing via the laser links. (Credit: PCMag/Michael Kan)
Slide from the SpaceX Starlink presentation on mesh routing via the laser links. (Credit: PCMag/Michael Kan)

Although laser communication in space is far from novel, its wide-scale deployment as seen with SpaceX’s Starlink satellite internet constellation has brought the technology to the forefront like never before. This was quite apparent during the SPIE Photonics West event on January 30th when [Michael Kan] and other journalists attended a presentation by SpaceX’s [Travis Brashears] on the inter-satellite laser communication performance that was first enabled with the Starlink v1.5 satellites.

Among currently active inter-satellite communication systems, Starlink is by far the most numerous and with the highest bandwidth, reaching over 42 PB per day across its over 9000 space lasers (yes, that is over 9000) for a 5.6 Tbps throughput. Since these satellites form a mesh network with their 100 Gbps laser transceivers, a big part of using it efficiently is to route any data with the least amount of latency while taking into account link distance (maximum of 5,400 km), link duration (up to multiple weeks) and presence of other Starlink satellites before they become within reach. With this complex mesh in LEO, this also means that a very high uptime can be accomplished, with a claimed 99.99% due to rapid route changing.

For the future, SpaceX has plans to not only keep upgrading its own Starlink satellites with better laser transceivers, but to also make them available to third-party satellites, as well as beam the lasers directly down to Earth for ground-based transceivers. The latter is still cutting edge, despite it being tested to beam cat videos to Earth from Deep Space.