Building The Electronics For A Tesla Coil… And Watercooling Them

A few years ago [Patrick] was offered the Tesla coil of a friend of a friend. This was an opportunity too good for him to pass up.

He then began the creation of an Off-Line Tesla Coil (OLTC), where no supply transformer is used. The incoming mains supply is rectified and directly fed into the tank capacitor.

[Patrick] therefore had to build a huge capacitor bank and more importantly his own primary coil, made with a 1.6mm (0.064″) copper sheet to handle the immense current involved. Air cooling the electronics was sufficient until he started using his three phase input supply. As more power involves more heat, a waterblock was designed to cool the main transistor.

Patrick’s write-up is very detailed and worth the read. Once you’re finished with it, we advise you to browse through his website, where a lot more cool projects are described.

Wireless Marble Labyrinth Uses TI Dev Hardware

wireless-marble-labrinth-using-ti-dev-hardware

There’s so much affordable dev hardware out there these days that you can do a lot without even touching a soldering iron. This is a prime example. Texas Instruments software Engineer [Jordan Wills] recently completed this wirelessly controlled marble labyrinth.

Marble mazes like this are a popular targets for electronic tinkering. We’ve seen smartphones used as the controller, and others that dispense chocolate candy. This time around [Jordan] stuck with the store-bought game to simplify the build. A coworker helped by swapping the two control knobs with servo motors. These interface with a Stellaris Launchpad that has a SensorHub booster pack (shield) and CC2533 radio transceiver module. The same hardware makes up the remote unit as well. This turns the remote into an air mouse by reading the gyroscope, accelerometer, and magnetometer from the booster pack.

He doesn’t specifically mention it in his project log, but we think the magnetometer is used to sync orientation between the base unit and the user remote. Even though the board for the base unit is mounted at 90 degrees compared to how you hold the remote, you should still be able to adjust for the readings in code, right?

Continue reading “Wireless Marble Labyrinth Uses TI Dev Hardware”

Bitbanging I2C By Hand

I2C

Play around with electronics long enough, and eventually you’ll run into I2C devices. These chips – everything from sensors and memory to DACs and ADCs – use a standardized interface that consists of only two wires. Interacting with these devices is usually done with a microcontroller and an I2C library, but [Kevin] wanted to take that one step further. He’s bitbanging I2C devices by hand and getting a great education in the I2C protocol in the process.

Every I2C device is controlled by two connections to a microcontroller, a data line and a clock line. [Kevin] connected these lines to tact switches through a pair of transistors, allowing him to manually key in I2C commands one bit at a time.

[Kevin] is using a 24LC256 EEPROM for this demonstration, and by entering a control byte and two address bytes, he can enter a single byte of data by hand that will be saved for many, many years in this tiny chip.

Of course getting data into a chip is only half of the problem. By altering the control byte at the beginning of an I2C message by one bit, [Kevin] can also read data out of the chip.

This isn’t [Kevin]’s first experimentation in controlling chips solely with buttons. Earlier, we saw him play around with a 595 shift register using five push buttons. It’s a great way to intuit how these chips actually work, and would be an exceptional learning exercise for tinkerers young and old,

Continue reading “Bitbanging I2C By Hand”

Voice Controlled Home Automation Uses Raspberry Pi And LightwaveRF

It’s not quite artificial intelligence, but saying “Jeeves, lights!” will switch on the bulbs in the room. [Chipos81] built the voice-activated home automation around a Rapsberry Pi board with LightwaveRF devices switching lights and outlets.

The LightwaveRF system offers a WiFi link which provides Internet connectivity for all of those devices in your house. This makes it a snap for [Chipos81] to control them from the RPi. To provide speech recognition he’s using CMU Sphinx. It’s an open source speech recognition library developed by researchers at Carnegie Mellon University and released under a BSD license. It seems to do a great job in the video of quickly parsing several sets of commands.

“Jeeves” will even talk back to you to confirm a command. This is generated by Festival, a package developed by the University of Edinburgh.  This provides some entertainment in the last seconds of the video as we detect a distinct Scottish accent when it says “See you tomorrow”.

The GPIO pins provide a bit of feedback, using three colored LEDs to let you know what is going on with the system. There’s even an IR LED used to add voice control to your Television.

Continue reading “Voice Controlled Home Automation Uses Raspberry Pi And LightwaveRF”

Defeating Reddit’s CAPTCHA

cap

Here’s something we’re sure SEO specialists, PR reps, and other marketeers already know: how to write a script to game reddit.

The course of upvotes and downvotes controls which submission makes it to the front page of reddit. These submissions are voted on by users, and new accounts must log in and complete a CAPTCHA to vote. [Ian] discovered that reddit’s CAPTCHA is not really state-of-the-art, and figured out how to get a bot to solve it

The method exploits the 8-bit nature of the distorted grid in the CAPTCHA. Because this grid isn’t pure black or pure white, it’s at a lower intensity than the letters in the CAPTCHA. Putting the CAPTCHA through a threshold filter, deleting any blocks of pixels smaller than 20 pixels, and running it through a classifier (PDF there), a bot can guess what the letters of the CAPTCHA should be.

Out of the 489 CAPTCHAs [Ian] fed into his algorithm, only 28 – or 5.73% – were guessed correctly. However, because he knows which CAPTCHAs had failed segmentation, ignoring those can increase the success rate to 10%. Theoretically, by requesting new CAPTCHAs, [Ian] can get the accuracy of his CAPTCHA bot up to about 30%.

Combine this with a brilliant auto voting script that only requires someone to enter CAPTCHAs, and you’ve got the recipe for getting anything you want directly to the front page of reddit. Of course you could do the same with a few memes and pictures of cats, but you knew that already.

Making Vector Arcade Games With An FPGA

3d

While we’re sure most Hackaday readers were raised by arcade games featuring sprites, pixels, and other shiny brightly colored squares, this was not always so. Many classic arcade games – Lunar Lander, Gravitar, and Asteroids in particular – used vector displays. Instead of drawing individual pixels, these games functioned more like an oscilloscope, drawing lines. When [Todd] and [Andrew] got their hands on a monitor from an old Asteroids cabinet, they knew what they had to do: build their own vector arcade game.

The guys made their own DAC and Amplifier board that plugs right in to a Nexys2 FPGA dev board. This was after they tested out some 3D drawing code with a gnarly handmade R2R DAC they used to draw and rotate a cube on an oscilloscope screen.

Not only did the guys build a vector video card, they also connected the FPGA’s VGA out to a monochrome monitor for an in-game HUD. Awesome work that blows away anything available in the golden days of vector arcade games. It’s a beautiful piece of engineering that certainly deserves its own cabinet.

Video of the game available below.

Continue reading “Making Vector Arcade Games With An FPGA”

DIY 23mph+ Electric Skateboard

What’s the best way to get around NYC? If you asked [papo2110], he would probably suggest you build your own high-speed, long-range electric skateboard. You can’t cruise through any online maker community without tripping over a dozen e-vehicle projects these days. Nearly 18 months ago, even before the popular Boosted Boards Kickstarter, [papo2110] started piecing together a deck. His boards use a brushless outrunner motor, an RC car ESC (complete with brakes), and a chain drive to power him around Central Park at a top speed of 23mph.

The most impressive feat for this project, however, is the tireless revision through iterative design. The deck gets both an aluminum and a carbon fiber upgrade. Meaty 8S Headway LiFePo4’s replace a smaller 6S configuration. Even lights are added. As the build progresses, the board is pushing 27mph: with only one motor. Grab your helmet and motion-sickness pills and strap in for some videos after the break.

If four wheels are one too many and you want even more dangerous speeds, check out the E-trike build from a few months ago.

Continue reading “DIY 23mph+ Electric Skateboard”