IR Theremin Speaks In Four Voices

infraredTheremin

At the end of every semester, we get a bunch of cool and well-documented student projects from Cornell’s ECE4760 class. [Scott] and [Alex]’s infrared theremin is no exception.

The classic theremin design employs each of the player’s hands as the grounded plate of a variable capacitor in an LC circuit. For the pitch antenna, this circuit is part of the oscillator. For the volume antenna, the hand capacitor detunes another oscillator, changing the attenuation in the amplifier.

[Scott] and [Alex] put a twist on the theremin by using two IR sensors to control volume and pitch. The sensors compute the location of each hand and output a voltage inversely proportional to its distance from the hand. An ATMega1284P converts the signal to an 8-bit binary number for processing. They built four voices into it that are accessible through the push-button switch. The different voices are created with wave combinations and modulation effects. In addition to Classic Theremin, you can play in pure sine, sawtooth, and FM modulation.

If you’re just not that into microcontrollers, you could build this digital IR theremin instead. If you find IR theremins soulless or plebeian, try this theremincello.

Continue reading “IR Theremin Speaks In Four Voices”

Software Advice For Anyone Thinking About A CNC Router

Excellent results can come from a small CNC router, but don’t forget the software!

CNC tools, whatever their flavor, can greatly enhance your “making” or DIY ability. My current tool of choice is a CNC router. Being familiar with a manual milling machine, the concept seemed similar, and the price of these is quite reasonable when compared to some other tools. As described in this post, my machine is a Zen Toolworks model, but there are certainly other options to visit like this Probotix V90 model noted recently in this post.

Although any number of CNC router models look great in videos and pictures, rest assured that even the best machines require some patience to get one running satisfactorily. Setting up the machine can be a challenge, as well as figuring out what your machine is capable of, but one thing that might slip peoples’ minds is the software involved. Read on to find out all you need to know the basics of what goes on behind the scenes to “magically” produce interesting parts. Continue reading “Software Advice For Anyone Thinking About A CNC Router”

The World’s First Autonomous Flapping MAV

Screen Shot 2013-12-22 at 7.57.23 PM

[Ferdinand] sent in a tip about the very cool DelFly Explorer, built by researchers at Netherlands’ Delft University of Technology, which is claimed to be the world’s first autonomous, flapping micro air vehicle. While it doesn’t fly like a typical ornithopter, the specs will convince you not to care. It has an 28 cm wingspan and weighs 20 grams, which includes motors, a battery, two cameras, and an autopilot. The autopilot uses accelerometers and a gyroscope, plus a barometer for altitude measurement. You can see the on-board video at the 35-second mark on the video (after the break). They are incredibly noisy images, but apparently the researchers have come up with some algorithms that can make sense of it.

Put it all together, and you have a machine that can take off, maintain altitude, avoid obstacles, and fly for nine minutes. We’ve seen a cool ornithopter design before, and even a thrust vectoring plane, but this surpasses both projects. It’s pretty incredible what they have been able to fit into such a small design.

Continue reading “The World’s First Autonomous Flapping MAV”

Repairing A Non-Serviceable Welding Hood

LB5fUD1 - Imgur

[Unixgeek] owns an Optrel welding hood, which contains a lens that auto-adjusts for various welding tasks. It stopped working properly, and this hood is “Non-Serviceable”, so he had to either throw it away or hack it. The problem was that he knew it contained batteries, but they weren’t accessible. Using his milling machine, he was able to fix it himself. After removing the outer layer of plastic [Unixgeek] found that it was filled with foam. With continued milling he finally uncovered the batteries. They are standard CR2330 cells, so he could easily replace them, or set up a separate battery holder.

We like seeing this sort of hack, as simple as it is, because of how much we truly hate devices with planned obsolescence built in. This is a >$300 safety device that gets broken when some coin cells finally die. Any sort of hack to keep people from having to throw away their devices is a good thing.

Do you have a favorite planned obsolescence hack? Share it in the comments!

Holograms With The New Kinect

kinect

The Xbox One is out, along with a new Kinect sensor, and this time around Microsoft didn’t waste any time making this 3D vision sensor available for Windows. [programming4fun] got his hands on the new Kinect v2 sensor and started work on a capture system to import anything into a virtual environment.

We’ve seen [programming4fun]’s work before with an extremely odd and original build that turns any display into a 3D display with the help of a Kinect v1 sensor. This time around, [programming] isn’t just using a Kinect to display a 3D object, he’s also using a Kinect to capture 3D data.

[programming] captured himself playing a few chords on a guitar with the new Kinect v2 sensor. This was saved to a custom file format that can be played back in the Unity engine. With the help of a Kinect v1, [programming4fun] can pan and tilt around this virtual model simply by moving his head.

If that’s not enough, [programming] has also included support for the Oculus Rift, turning the Unity-based virtual copy of himself into something he can interact with in a video game.

As far as we can tell, this is the first build on Hackaday using the new Kinect sensor. We asked what everyone was going to do with this new improved hardware, and from [programming]’s demo, it seems like there’s still a lot of unexplored potential with the new Xbox One spybox.

Continue reading “Holograms With The New Kinect”

Fubarino Contest: The Problem Of Being Very Good At Foosball

hachaoay [Sebastian] works at an engineering company testing car ECUs, head units, and all the confusing wiring harnesses found in the modern-day automobile. It’s good work, but not exactly fun, so [Sebastian]’s bosses bought a foosball table so the employees could unwind. The foosball tables have been there for several years, and now everyone at the company is really, really good at twirling little football players on a stick. With their current rule set (at least 6 goals and 2 goals ahead), matches last at least twenty minutes.

[Sebastian] came up with a solution to this problem: a KickerClock – something between a chess clock and an automated score keeper for foosball. The device has two seven-segment displays for each team, and a countdown timer for both of the four and a half minute rounds. All the documentation is up in [Sebastian]’s Google Drive, and he plans on adding a few neat features such as automated score keeping.

The easter egg for this submission? The buttons for scoring each goal are used as combination lock. By scoring eight black team goals (H=8), one silver team goal (A=1), three black goals (C=3), and eleven silver goals (K=11), the Hackaday URL shows up on the seven-segment displays. Extremely well hidden, and a great way to efficiently waste time at work.

Video of the KickerClock, and the easter egg, available below.


This is an entry in the Fubarino Contest for a chance at one of the 20 Fubarino SD boards which Microchip has put up as prizes!

Continue reading “Fubarino Contest: The Problem Of Being Very Good At Foosball”

3D Printering: Making A Thing In AutoCAD, Part II

printering

It’s time once again for another part in 3D Printering’s series of Making A Thing. Last week was a short tutorial on the beginnings of making a thing in AutoCAD. This is an extremely complex software package, and in a desire to make things short and sweet, I broke this AutoCAD tutorial into two parts.

Since we already covered the 2D design portion of AutoCAD, part II of this tutorial is going to turn our 2D part into a three-dimensional object. Check out the rest of the tutorial below.

Continue reading “3D Printering: Making A Thing In AutoCAD, Part II”