Mining And Refining: Cobalt, The Unfortunately Necessary Metal

The story of humankind is largely a tale of conflict, often brought about by the uneven distribution of resources. For as long as we’ve been down out of the trees, and probably considerably before that too, our ancestors have been struggling to get what they need to survive, as often as not at the expense of another, more fortunate tribe. Food, water, land, it doesn’t matter; if They have it and We don’t, chances are good that there’s going to be a fight.

Few resources are as unevenly distributed across our planet as cobalt is. The metal makes up only a fraction of a percent of the Earth’s crust, and commercially significant concentrations are few and far between, enough so that those who have some often end up at odds with those who need it. And need it we do; what started in antiquity as mainly a rich blue pigment for glass and ceramics has become essential for important industrial alloys, high-power magnets, and the anodes of lithium batteries, among other uses.

Getting access to our limited supply of cobalt and refining it into a useful metal isn’t a trivial process, and unfortunately its outsized importance to technological society forces it into a geopolitical role that has done a lot to add to human misery. Luckily, market forces and new technology are making once-marginal sources viable, which just may help us get the cobalt we need without all the conflict.

Continue reading “Mining And Refining: Cobalt, The Unfortunately Necessary Metal”

Flux: A Forty Foot Long Kinetic Art Piece

No office space is complete without some eye-catching art piece to gawp at whilst you mull over your latest problem. But LED-based displays are common enough to be boring these days. Kinetic art pieces are where it’s at, and this piece called Flux is a perfect example.

Commissioned for the Toronto office of a very popular e-commerce platform and constructed by [Nicholas Stedman], Flux consists of twenty identical planks on the ceiling, arranged in a line forty feet long. Each plank has a pair of rotating prisms, constructed from a stack of foam sheets, finished with metallic paint. The prisms are spun by individual stepper motors, each of which is driven by a TMC2160-based module, making them whisper-quiet.

A simple 3D printed bracket holds a small PCB holding an AMS AS5600 rotary magnetic encoder, onto the rear of the stepper motor. This allows for closed-loop feedback to the shared Arduino, which is very important for a sculpture such as this. Each Arduino is hooked up to a Raspberry Pi, running a simple application written in node.js which is responsible for coordinating movement, as well as uploading updated firmware images as required. A simple, but very effective build, we think!

Even more fun are kinetic art installations that are reactive to some data source, such as Adad, which visualizes lightning strike data. If these builds are just too big and complex, we’ve seen many examples of smaller desktop toys, such as this 3D printed tumbling chain demo for example.

Continue reading Flux: A Forty Foot Long Kinetic Art Piece”

Simple Hacks To Make LEGO Train Track Out Of Other Pieces

LEGO trains are fun to play with, but as with any model train, you so seldom have enough track to fulfill your greatest desires. YouTuber [brick_on_the_tracks] has come up with some creative ideas of his own to make track compatible with Lego trains using other techniques.

TRAINED LEGO PROFESSIONALS! DO NOT ATTEMPT IN REAL LIFE!

The most straightforward is to use the LEGO fence piece, first released in 1967. They can be laid in two rows, four studs apart, and they’ll serve as perfectly functional train track. It’s a 100% legal building technique as per the official LEGO rules, too. Official track pieces can be linked up by placing them on a 1-stud-high booster. [brick_on_the_tracks] argues that it’s up to nine times cheaper than using official track, but it depends on how you’re building your layout, and you need to take into account the need for a base plate.

On the sillier side of things, it’s actually possible to use mini-figures as track, too. Again, it’s a 100% legal technique, though the trains don’t run as smoothly compared to the fence track. It’s very amusing, though, and could be a fun addition to a build you’re taking to a local LEGO convention.

If you’re really strapped for cash though, you can go as far as using cardboard. It’s not legal in the LEGO world, and it’s pretty basic, but you could literally make up a layout using nothing but a craft knife and pizza boxes. We’ve actually featured other LEGO train hacks before, like this neat automatic decoupler design.

Continue reading “Simple Hacks To Make LEGO Train Track Out Of Other Pieces”

A Simple Streaming Radio Receiver

For those interested in a career in broadcast radio there aren’t many routes into the business. Student radio, pirate radio, and hospital radio usually feature somewhere near the start of any DJ’s resumé. Hospital radio stations often don’t have a transmission license and have historically relied on wired systems, but since those can’t reach everywhere they are now more likely to look to the Internet. [AllanGallop] has created the Mini Web Radio for the hospital station in the British city of Milton Keynes, a compact battery-powered single station streaming radio receiver that can pick up those tunes anywhere with a wireless network connection.

Inside the neatly designed 3D printed box the hardware is quite straightforward, a WeMos ESP32 board and a MAX98357A I2S digital amplifier module all powered by an 18650 cell. There’s a volume control and headphone socket, which is all that’s needed for the user interface. The software has code for both Arduino and Platform.io and is configured as you might expect through a web interface. Everything can be found in a handy GitHub repository should you wish to build one yourself. Meanwhile, it’s particularly pleasing as a Hackaday scribe to feature a project with roots in one’s own hackerspace, in this case, Milton Keynes Makerspace.

Thanks [Cid] for the tip!

Hackaday Podcast 178: The Return Of Supercon, Victory For Open Source, Exquisite Timepieces, And Documentation To Die For

Hackaday Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi start this week’s podcast off with an announcement the community has been waiting years for: the return of the Hackaday Supercon! While there’s still some logistical details to hammer out, we’re all extremely excited to return to a live con and can’t wait to share more as we get closer to November. Of course you can’t have Supercon without the Hackaday Prize, which just so happens to be wrapping up its Hack it Back challenge this weekend.

In other news, we’ll talk about the developing situation regarding the GPLv3 firmware running on Ortur’s laser engravers (don’t worry, it’s good news for a change), and a particularly impressive fix that kept a high-end industrial 3D printer out of the scrapheap. We’ll also fawn over a pair of fantastically documented projects, learn about the fascinating origins of the lowly fire hydrant, and speculate wildly about the tidal wave of dead solar panels looming menacingly in the distance.

Or download the fresh bitstream yourself.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 178: The Return Of Supercon, Victory For Open Source, Exquisite Timepieces, And Documentation To Die For”

A wooden picture frame with an e-ink display

Receive Virtual Postcards On This Beautiful E-Ink Photo Frame

Sending postcards to loved ones used to be standard procedure for travelers back when travel was glamorous and communications were slow. While some travelers still keep this tradition alive, many have replaced stamps and post offices with instant messaging and social media — faster and more convenient, but a lot less special than receiving a postcard with a handwritten message from a faraway land.

[Cameron] designed a postcard picture frame that aims to bring back a bit of that magic. It’s a wooden frame that holds an e-ink display, which shows pictures sent to it by your friends. All they need to do is open the unique link that you sent them beforehand and upload an interesting photo; the picture frame will cycle through the submissions based on an adjustable schedule. A web interface allows you to change settings and delete any inappropriate images.

A black PCB with an ESP32 mounted on itThe wooden frame is beautifully made, but the sleek black PCB inside is an true work of art. It holds a battery and a USB-C charging circuit, as well as an ESP32 that connects to WiFi, stores images and downscales them to the 800×480 monochrome format used by the display. [Cameron] has not accurately measured the current consumption, but estimates that it should work for about one year on a single charge thanks to the extremely low power requirements of e-ink displays.

Having your friends decide on the images shown in your house is an interesting idea, if you can trust them to keep it decent. If you like to have more control over your e-ink display, have a look at this solar-powered model or this wall-mounted newspaper display.

Continue reading “Receive Virtual Postcards On This Beautiful E-Ink Photo Frame”

A Receive Antenna Switcher With An Espressif Brain

It’s not uncommon for a radio enthusiast to have multiple antennas for the same radio, so as you might expect it’s also entirely usual to have a bunch of coaxial cables dangling down for fumbling around the back of the rig to swap over.  If that describes your radio experience than you might be interested in the antenna switcher built by [g3gg0], which uses solid-state RF switches controlled by an ESP32 module.

At its heart is the MXD8625C RF switch, a tiny device designed for cellular phone applications that delivers only a fraction of a dB insertion loss and somehow negates the need for any blocking capacitors. It’s controlled by a GPIO line, and he’s hooked up a brace of them to allow the distribution of three antennas to a couple of radios with the handy option of switching in a preamplifier if required. Of even more interest we note that the device is suitable for transmitter switching too, with a maximum 36.5 dBm throughput that we calculate to be about 4.5 W. This board is fairly obviously for receive use, but perhaps the chip is of interest to anyone considering a transceiver project. Meanwhile the software is a relatively simple web-based control linking on-screen controls to GPIOs.

If you are interested in solid state RF switches, it’s always worth remembering that at lower frequencies they can be very simple indeed.