A Proper Computer For A Dollar?

When a tipster came to us with the line “One dollar BASIC computer”, it intrigued us enough to have a good look at [Stan6314]’s TinyBasRV computer. It’s a small PCB that forms a computer running BASIC. Not simply a microcontroller with a serial header, this machine is a fully functioning BASIC desktop computer that takes a PS/2 keyboard and a VGA monitor. Would that cheap price stand up?

The board uses a CH32 microcontroller, a RISC-V part that’s certainly very cheap indeed and pretty powerful, paired with an I2C memory chip for storage. The software is TinyBASIC. There’s some GPIO expandability and an I2C bus, and it’s claimed it can run in headless mode for a BASIC program to control things.

We haven’t added up all the parts in the BoM to check, but even if it’s not a one dollar computer it must come pretty close. We can see it could make a fun project for anyone. It’s certainly not the only small BASIC board out there, it’s got some competition.

Thanks [Metan] for the tip.

Hackaday Podcast Episode 330: Hover Turtles, Dull Designs, And K’nex Computers

What did you miss on Hackaday last week? Hackaday’s Elliot Williams and Al Williams are ready to catch you up on this week’s podcast. First, though, the guys go off on vibe coding and talk about a daring space repair around Jupiter.

Then it is off to the hacks, including paste extruding egg shells, bespoke multimeters, and an 8-bit mechanical computer made from a construction toy set.

For can’t miss articles, you’ll hear about boring industrial design in modern cell phones and a deep dive into how fresh fruit makes it to your table in the middle of the winter.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

The DRM-free MP3 was stored in a public refrigerated warehouse to ensure freshness. Why not download it and add it to your collection?

Continue reading “Hackaday Podcast Episode 330: Hover Turtles, Dull Designs, And K’nex Computers”

Why Apple Dumped 2,700 Computers In A Landfill In 1989

In 1983, the Lisa was supposed to be a barnburner. Apple’s brand-new computer had a cutting edge GUI, a mouse, and power far beyond the 8-bit machines that came before. It looked like nothing else on the market, and had a price tag to match—retailing at $9,995, or the equivalent of over $30,000 today.

It held so much promise. And yet, come 1989, Apple was burying almost 3,000 examples in a landfill. What went wrong?

Continue reading “Why Apple Dumped 2,700 Computers In A Landfill In 1989”

8 Bit Mechanical Computer Built From Knex

Long before electricity was a common household utility, humanity had been building machines to do many tasks that we’d now just strap a motor or set of batteries onto and think nothing of it. Transportation, manufacturing, agriculture, and essentially everything had non-electric analogs, and perhaps surprisingly, there were mechanical computers as well. Electronics-based computers are far superior in essentially every way, but the aesthetics of a mechanical computer are still unmatched, like this 8-bit machine built from K’nex.

Continue reading “8 Bit Mechanical Computer Built From Knex”

8-Core ARM Pocket Computer Runs NixOS

What has 8 ARM cores, 8 GB of RAM, fits in a pocket, and runs NixOS? It’s no pi-clone SBC, but [MWLabs]’s smartphone– a OnePlus 6, to be precise.

The video embedded below, and the git link above, are [MWLabs]’s walk-through for loading the mobile version of Nix onto the cell phone, turning it into a tiny-screened Linux computer. He’s using the same flake on the phone as on his desktop, which means he gets all the same applications set up in the same way– talk about convergence. That’s an advantage to Nix in this application, compared to the usual Alpine-based PostMarketOS.

Of course some of the phone-like features of this pocket-computer are lacking: the SIM is detected, and he can text, but 4G is nonfunctional. The rear camera is also not there yet, but given that Mobile-NixOS builds on the work done by well-established PostMarketOS, and PostMarketOS’ testing version can run the camera, it’s only a matter of time before support comes downstream. Depending what you need a tiny Linux device for, the camera functionality may or may not be of particular interest. If you’re like us, the idea of a mobile device running Nix might just intrigue you,

Smartphones can be powerful SBC alternatives, after all.  You can even turn them into SBCs. As long as you don’t need a lot of GPIO, like for a server,a phone in hand might be worth two birds in the raspberry bush.

Continue reading “8-Core ARM Pocket Computer Runs NixOS”

A History Of The Tandy Computers

Radio Shack, despite being gone for a number of years, is still in our cultural consciousness. But do you know Tandy? And did you ever wonder how a leather company that started in 1919 became, briefly, a computer giant? Or even an electronics retailer? [Abort Retry Fail] has the story in three parts, framed with their computers. Well, three parts so far. They are only up to the Tandy 1000.

At first, the company made parts for shoes. But after World War II, they found that catering to leather crafting hobbyists was lucrative. Within a few years, they’d opened stores across the country, making sure that the store managers owned 25% of their stores, even if it meant they had to borrow money from the home office to do so. Meanwhile, Radio Shack was in Boston selling to radio amateurs. By 1935, Radio Shack was a corporation. In 1954, they started selling “Realist” brand equipment, that we would come to know as Realistic.

In 1961, Tandy decided to branch out into other hobby markets, including radio hobbyists. But Radio Shack, dabbling in consumer credit, was sunk with $800,000 of uncollectable consumer credit.

In 1963, Tandy purchased the struggling Radio Shack for $300,000, which was a substantial amount of money in those days. Tandy immediately set about making Radio Shack profitable. Tandy would eventually split into three companies, spinning off its original leather and craft businesses.

Then came computers. If you are at all interested in the history of early computers, the TRS-80, or any of the other Radio Shack computers, you’ll enjoy the story. It wasn’t all smooth sailing. We can’t wait to read part four, although sadly, we know how the story ends.

We don’t just miss the Radio Shack computers. We loved P-Box kits. Yeah, we know someone bought the brand. But if you visit the site, you’ll see it just isn’t the same.

Kids Vs Computers: Chisanbop Remembered

If you are a certain age, you probably remember the ads and publicity around Chisanbop — the supposed ancient art of Korean finger math. Was it Korean? Sort of. Was it faster than a calculator? Sort of. [Chris Staecker] offers a great look at Chisanbop, not just how to do it, but also how it became such a significant cultural phenomenon. Take a look at the video below. Long, but worth it.

Technically, the idea is fairly simple. Your right-hand thumb is worth 5, and each finger is worth 1. So to identify 8, you hold down your thumb and the first three digits. The left hand has the same arrangement, but everything is worth ten times the right hand, so the thumb is 50, and each digit is worth 10.

With a little work, it is easy to count and add using this method. Subtraction is just the reverse. As you might expect, multiplication is just repeated addition. But the real story here isn’t how to do Chisanbop. It is more the story of how a Korean immigrant’s system went viral decades before the advent of social media.

You can argue that this is a shortcut that hurts math understanding. Or, you could argue the reverse. However, the truth is that this was around the time the calculator became widely available. Math education would shift from focusing on getting the right answer to understanding the underlying concepts. In a world where adding ten 6-digit numbers is easy with a $5 device, being able to do it with your fingers isn’t necessarily a valuable skill.

If you enjoy unconventional math methods, you may appreciate peasant multiplication.

Continue reading “Kids Vs Computers: Chisanbop Remembered”