KiCad render of µLind pcb

The 6809 8-Bit Microcomputer: A Father-Son Odyssey

If you’re nostalgic for the golden age of microprocessors and dream of building your own computer, this story might spark your imagination. [Eric Lind], passionate retro enthusiast and his 14-year-old son, embarked on a mission to craft a microcomputer from scratch, centred around the exotic Motorola 6809 chip: the µLind.

What sets this project apart is its ambition: bridging retro computing with modern enhancements. Starting with just a 6809 and some basic peripherals, the men designed a multi-stage roadmap to realize their dream. Each stage brought new challenges: debugging an address decoder, reworking memory management, and evolving glue logic into programmable GAL chips. Fascinatingly, the project isn’t just about nostalgia—it’s a playground for exploring multitasking operating systems and pushing the boundaries of 8-bit computing.

Their creativity shines in solutions like a C64-compatible joystick port, add-on expansion cards, and a memory overkill of 1MB RAM. With every setback—a missing pull-up resistor or a misrouted IRQ signal—their determination grew stronger. By combining old-school know-how with modern tools like KiCad, they’ve created something that is both personal and profoundly inspiring.

[Eric]’s hope and goal is to establish a community of people that want to expand beyond the traditional Z80 and 6502 based SBC’s. Interested? Read [Eric]’s project log on Hackaday.io and start crafting!

8-Bit Computers Crunch Advanced Scientific Computations

Although largely relegated to retrocomputing enthusiasts and embedded systems or microcontrollers now, there was a time when there were no other computers available other than those with 8-bit processors. The late 70s and early 80s would have seen computers with processors like the Motorola 6800 or Intel 8080 as the top-of-the-line equipment and, while underpowered by modern standards, these machines can do quite a bit of useful work even today. Mathematician [Jean Michel Sellier] wanted to demonstrate this so he set up a Commodore 64 to study some concepts like simulating a quantum computer.

The computer programs he’s written to do this work are in BASIC, a common high-level language of the era designed for ease of use. To simulate the quantum computer he sets up a matrix-vector multiplication but simplifies it using conditional logic. Everything is shown using the LIST command so those with access to older hardware like this can follow along. From there this quantum computer even goes as far as demonstrating a quantum full adder.

There are a number of other videos on other topics available as well. For example, there’s an AmigaBasic program that simulates quantum wave packets and a QBasic program that helps visualize the statistical likelihood of finding an electron at various locations around a hydrogen nucleus. While not likely to displace any supercomputing platforms anytime soon, it’s a good look at how you don’t need a lot of computing power in all situations. And, if you need a refresher on some of these concepts, there’s an overview on how modern quantum computers work here.

Exploring The Gakken FX Micro-Computer

Early computer kits aimed at learning took all sorts of forms, from full-fledged computer kits like the Altair 8800 to the ready-made MicroBee Computer-In-A-Book. For those just wanting to dip their toes in the computing world, many low-cost computer “trainers” were released, and Japan had some awesome ones. [Jason Jacques] shows off his Gakken Micro-Computer FX-System (or is it the FX-Computer? Or maybe the FX-Micom? It seems like they couldn’t make up their minds). In any event, it was a combination microcomputer and I/O building blocks system running a custom version of the Texas Instrument TMS1100 microprocessor. Specifically designed to introduce users to the world of computing, the included guide is very detailed and includes 100 example programs and lots of information on how all the opcodes work.

This 4-bit system is similar to the Kenbak computer, with a very simple instruction set and limited address space. However, adding electronic components in plastic blocks brings this machine to a new level of interactivity. Connections can be made to and from the microcomputer block, as well as to the on-board speaker and simple input/output pins.  The example circuit displayed on the front cover of the box enables the microcontroller to connect to the speaker and allows a switch to light up a small incandescent bulb. We can imagine many users wiring up all sorts of extra components to their FX-Computers, and with the advent of 3D printing, it wouldn’t be difficult to create new blocks to insert into the grid.

Continue reading “Exploring The Gakken FX Micro-Computer”

Teaching Computers To Read — Sort Of

If you ask someone who grew up in the late 1970s or early 1980s what taught them a lot about programming, they’d probably tell you that typing in programs from magazines was very instructive. However, it was also very boring and error-prone. In fact, we’d say it was less instructional to do the typing than it was to do the debugging required to find all your mistakes. Magazines hated that and, as [Tech Tangents] shows us in a recent video, there were efforts to make devices that could scan barcodes from magazines or books to save readers from typing in the latest Star Trek game or Tiny Basic compiler.

The Cauzin Softstrip was a simple scanner that could read barcodes from a magazine or your printer if you wanted to do backups. As [Tech Tangents] points out, you may not have heard of it, but at the time, it seemed to be the future of software distribution.

Continue reading “Teaching Computers To Read — Sort Of”

Building A Motor Feed For The UE1 Vacuum Tube Computer’s Paper Tape Reader

Building a paper tape reader by itself isn’t super complicated: you need a source of light, some photoreceptors behind the tape to register the presence of holes and some way to pull the tape through the reader at a reasonable rate. This latter part can get somewhat tricky, as Usagi Electric‘s [David Lovett] discovered while adding this feature to his vacuum tube-era DIY reader. This follows on what now seems like a fairly simple aspect of the photosensors and building a way to position said photosensors near the paper tape.

As the feed rate of the paper tape is tied to the reading speed, and in the case of [David]’s also contains the clock for the custom tube-based UE1 computer, it determines many of the requirements. With 8 bits per line, the tape forms the ROM for the system, all of which has to be executed and used immediately when read, as there is no RAM to load instructions into. This also necessitates the need to run the tape as an endless loop, to enable ‘jumping’ between parts of this paper-based ROM by simple masking off parts of the code until the desired address is reached.

For the motor a slot car motor plus speed-reduction gear was chosen, with a design to hold these then designed in FreeCAD. Courtesy of his brother’s hobby machine shop and a CAD professional’s help, producing these parts was very easy, followed by final assembly. Guides were added for the tape, not unlike with a cassette player, which allowed the tape to be pulled through smoothly. Next up is wiring up the photodiodes, after which theoretically the UE1 can roar into action directly running programs off paper tape.

Continue reading “Building A Motor Feed For The UE1 Vacuum Tube Computer’s Paper Tape Reader”

Retrotechtacular: Computer-Generate Video 1968 Style!

[Classic Microcomputers] read in a book that there was a computer-generated film made in the late 1960s, and he knew he had to watch it. He found it and shared it along with some technical information in the video below.

Modern audiences are unlikely to be wowed by the film — Permutations — that looks like an electronic spirograph. But for 1968, this was about as high tech as you could get. The computer used was an IBM mainframe which would have cost a fortune either to buy or to rent the hours it would take to make this short film. Now, of course, you could easily replicate it on even your oldest PC. In fact, we are surprised we haven’t seen any recreations in the demoscene.

Continue reading “Retrotechtacular: Computer-Generate Video 1968 Style!”

The Most Inexpensive Apple Computer Possible

If Apple has a reputation for anything other than decent hardware and excellent industrial design, it’s for selling its products at extremely inflated prices. But there are some alternatives if you want the Apple experience on the cheap. Buying their hardware a few years out of date of course is one way to avoid the bulk of the depreciation, but at the extreme end is this working Mac clone that cost just $14.

This build relies on the fact that modern microcontrollers absolutely blow away the computing power available to the average consumer in the 1980s. To emulate the Macintosh 128K, this build uses nothing more powerful than a Raspberry Pi Pico. There’s a little bit more to it than that, though, since this build also replicates the feel of the screen of the era as well. Using a “hat” for the Pi Pico from [Ron’s Computer Videos] lets the Pico’s remaining system resources send the video signal from the emulated Mac out over VGA, meaning that monitors from the late 80s and on can be used with ease. There’s an option for micro SD card storage as well, allowing the retro Mac to have an incredible amount of storage compared to the original.

The emulation of the 80s-era Mac is available on a separate GitHub page for anyone wanting to take a look at that. A VGA monitor is not strictly required, but we do feel that displaying retro computer graphics on 4K OLEDs leaves a little something out of the experience of older machines like this, even if they are emulated. Although this Macintosh replica with a modern e-ink display does an excellent job of recreating the original monochrome displays of early Macs as well.

Continue reading “The Most Inexpensive Apple Computer Possible”