DMCA Review: Big Win For Right To Repair, Zero For Right To Tinker

This year’s Digital Millennium Copyright Act (DMCA) triennial review (PDF, legalese) contained some great news. Particularly, breaking encryption in a product in order to repair it has been deemed legal, and a previous exemption for reverse engineering 3D printer firmware to use the filament of your choice has been broadened. The infosec community got some clarification on penetration testing, and video game librarians and archivists came away with a big win on server software for online games.

Moreover, the process to renew a previous exemption has been streamlined — one used to be required to reapply from scratch every three years and now an exemption will stand unless circumstances have changed significantly. These changes, along with recent rulings by the Supreme Court are signs that some of the worst excesses of the DMCA’s anti-circumvention clause are being walked back, twenty years after being enacted. We have to applaud these developments.

However, the new right to repair clause seems to be restricted to restoring the device in question to its original specifications; if you’d like to hack a new feature into something that you own, you’re still out of luck. And while this review was generally favorable of opening up technology to enable fair use, they didn’t approve Bunnie Huang’s petition to allow decryption of the encryption method used over HDMI cables, so building your own HDMI devices that display encrypted streams is still out. And the changes to the 3D printer filament exemption is a reminder of the patchwork nature of this whole affair: it still only applies to 3D printer filament and not other devices that attempt to enforce the use of proprietary feedstock. Wait, what?

Finally, the Library of Congress only has authority to decide which acts of reverse engineering constitute defeating anti-circumvention measures. This review does not address the tools and information necessary to do so. “Manufacture and provision of — or trafficking in — products and services designed for the purposes of circumvention…” are covered elsewhere in the code. So while you are now allowed decrypt your John Deere software to fix your tractor, it’s not yet clear that designing and selling an ECU-unlocking tool, or even e-mailing someone the decryption key, is legal.

Could we hope for more? Sure! But making laws in a country as large as the US is a balancing act among many different interests, and the Library of Congress’s ruling is laudably clear about how they reached their decisions. The ruling itself is worth a read if you want to dive in, but be prepared to be overwhelmed in apparent minutiae. Or save yourself a little time and read on — we’ve got the highlights from a hacker’s perspective.

Continue reading “DMCA Review: Big Win For Right To Repair, Zero For Right To Tinker”

Paper Airplane Database Has The Wright Stuff

We’ve always had a fascination with things that fly. Sure, drones are the latest incarnation of that, but there have been RC planes, kites, and all sorts of flying toys and gizmos even before manned flight was possible. Maybe the first model flying machine you had was a paper airplane. There’s some debate, but it appears the Chinese and Japanese made paper airplanes 2,000 years ago. Now there’s a database of paper airplane designs, some familiar and some very cool-looking ones we just might have to try.

If you folded the usual planes in school, you’ll find those here. But you’ll also find exotic designs like the Sea Glider and the UFO. The database lets you select from planes that work better for distance, flight time, acrobatics, or decoration. You can also select the construction difficulty and if you need to make cuts in the paper or not. There are 40 designs in all at the moment. There are step-by-step instructions, printable folding instructions, and even YouTube videos showing how to build the planes.

Continue reading “Paper Airplane Database Has The Wright Stuff”

Friday Hack Chat: Air Hacking

The field of soft robotics sure seems a lot less mature than your standard servo motor and metal framed robot arms. Maybe that’s because building a robot to flex is harder, and maybe it’s because the best methods of constructing soft robotics have only been around for a decade or so. Maybe, though, it’s because it’s hard to control air.

For this week’s Hack Chat, we’re going to be discussing Air Hacking with [Amitabh Shrivastava]. [Amitabh] is a grad student at ITP, NYU studying creative technology, where he makes interactive art, tools for research, and experiments with various materials. Lately he has been developing Programmable-Air, a pneumatic controller for soft robotics. We’ve seen his work at ThiMaker Faire, and it’s an awesome project in this year’s Hackaday Prize.

In this chat we will be talking about DIY soft robotics. Soft robotics is a growing field with a lot of low hanging fruits within grasp of the hobbyist maker. In addition to sharing experience and resources about building your own soft robots, we will talk about actuation! Tune in to see how you can use pneumatics in your next project.

During this week’s Hack Chat, we’ll be discussing:

  • Pneumatics
  • Programmable Air
  • Soft Robotics
  • Methods of adding pneumatics to your project

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Air Hacking Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Friday, October 26th, at noon, Pacific time. If time zones got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Teardown: D50761 Aircraft Quick Access Recorder

Everyone’s heard of the “black box”. Officially known as the Flight Data Recorder (FDR), it’s a mandatory piece of equipment on commercial aircraft. The FDR is instrumental in investigating incidents or crashes, and is specifically designed to survive should the aircraft be destroyed. The search for the so-called “black box” often dominates the news cycle after the loss of a commercial aircraft; as finding it will almost certainly be necessary to determine the true cause of the accident. What you probably haven’t heard of is a Quick Access Recorder (QAR).

While it’s the best known, the FDR is not the only type of recording device used in aviation. The QAR could be thought of as the non-emergency alternative to the FDR. While retrieving data from the FDR usually means the worst has happened, the QAR is specifically designed to facilitate easy and regular access to flight data for research and maintenance purposes. Its data is stored on removable media and since the QAR is not expected to survive the loss of the aircraft it isn’t physically hardened. In fact, modern aircraft often use consumer-grade technology such as Compact Flash cards and USB flash drives as storage media in their QAR.

Through the wonders of eBay, I recently acquired a vintage Penny & Giles D50761 Quick Access Recorder. This was pulled out of an aircraft which had been in service with the now defunct airline, Air Toulouse International. Let’s crack open this relatively obscure piece of equipment and see just what goes into the hardware that airlines trust to help ensure their multi-million dollar aircraft are operating in peak condition.

Continue reading “Teardown: D50761 Aircraft Quick Access Recorder”

Glasses For The Hearing Impaired?

If you don’t have hearing loss, it is easy to forget just how much you depend on your ears. Hearing aids are great if you can afford them, but they aren’t like glasses where they immediately improve your sense in almost every way. In addition to having to get used to a hearing aid you’ll often find increased noise and even feedback. If you’ve been to a theater lately, you may have noticed a closed caption display system somewhere nearby that you can sit within visual range of should you be hard of hearing. That limits your seat choices though, and requires you to split your attention between the stage and the device. The National Theatre of London is using Epson smart glasses to put the captions right in your individual line of vision (see video below).

The Epson glasses are similar to the Google Glass that caused such a stir a few years ago, and it seems like such a great application we are surprised it has taken this long to be created. We were also surprised to hear about the length of the project, amazingly it took four years. The Epson glasses can take HDMI or USB-C inputs, so it seems as though a Raspberry Pi, a battery, and the glasses could have made this a weekend project.

Continue reading “Glasses For The Hearing Impaired?”

Studying Airplane Radio Reflections With SDR

A property of radio waves is that they tend to reflect off things. Metal surfaces in particular act as good reflectors, and by studying how these reflections work, it’s possible to achieve all manner of interesting feats. [destevez] decided to have some fun with reflections from local air traffic, and was kind enough to share the results.

The project centers around receiving 2.3 GHz signals from a local ham beacon that have been reflected by planes taking off from the Madrid-Barajas airport. The beacon was installed by a local ham, and transmits a CW idenfication and tone at 2 W of power.

In order to try and receive reflections from nearby aircraft, [destevez] put together a simple but ingenious setup.

ADS-B data was plotted on a map and correlated with the received reflections.

A LimeSDR radio was used, connected to a 9 dB planar 2.4 GHz WiFi antenna. This was an intentional choice, as it has a wide radiation pattern which is useful for receiving reflections from odd angles. A car was positioned between the antenna and the beacon to avoid the direct signal overpowering reflected signals from aircraft.

Data was recorded, and then compared with ADS-B data on aircraft position and velocity, allowing recorded reflections to be matched to the flight paths of individual flights after the fact. It’s a great example of smart radio sleuthing using SDR and how to process such data. If you’re thirsty for more, check out this project to receive Russian weather sat images with an SDR.

[Thanks to Adrian for the tip!]

High Detail 3D Printing With An Airbrush Nozzle

On a fused deposition modeling (FDM) 3D printer, the nozzle size dictates how small a detail you can print. Put simply, you can’t print features smaller than your nozzle for the same reason you’d have trouble signing a check with a paint roller. If the detail is smaller than the diameter of your tool, you’re just going to obliterate it. Those who’ve been around the block a few times with their desktop 3D printer may have seen this come up in practice when their slicer refused to print lines which were thinner than the installed nozzle (0.4mm on the vast majority of printers).

Smaller nozzles exist for those looking to improve their printer’s detail on small objects, but [René Jurack] wasn’t happy with just putting a finer nozzle on a stock E3D-style hotend. In his opinion it’s still a hotend and arrangement intended for 0.4mm printing, and doesn’t quite fully realize the potential of a smaller diameter nozzle. After some experimentation, he thinks he’s found the solution by using airbrush nozzles.

As [René] sees it, the hotend is too close to the subject being printed when using nozzles finer than 0.4mm. Since you’re working on tiny objects, the radiant heat from the body of the hotend being only a few millimeters away is enough to deform what you’re working on. But using the long and tapered airbrush nozzle, the hotend is kept at a greater distance from the print. In addition, it gives more room for the part cooling fan to hit the print with cool air, which is another critical aspect of high-detail FDM printing.

Of course, you can’t just stick an airbrush nozzle on your E3D and call it a day. As you might expect, they are tiny. So [René] designed an adapter that will let you take widely available airbrush nozzles and thread them into an M6 threaded hotend. He’s now selling the adapters, and judging by the pictures he posted, we have to say he might be onto something.

If you’re more about brute strength than finesse, you might be interested in outfitting your E3D with a ruby nozzle instead.

Continue reading “High Detail 3D Printing With An Airbrush Nozzle”