Getting Geared Up For Home Powder Coating

[Blondihacks] wanted to do powder coating for a model train without a lot of special equipment. She started with an Eastwood kit that runs about $230. Depending on the options, you can get the gun by itself for between $110 – $170. However, you will need more than just this kit. You can see how [Blondihacks] used the kit in the video below.

The idea behind powder coating is simple: an electrostatic charge attracts a powder — usually some polymer — and makes it stick to an item. Then heat or UV light turns the powder into a hard finish much tougher than paint. Powder coating can be thicker than paint and doesn’t run, either.

The gun requires a small air compressor, and you need an electric oven, which could be a toaster oven. It probably shouldn’t be an oven you plan to use for food. It should also be in a well-ventilated area, plus you’ll want a respirator or dust mask. [Blondhacks] used a portable paint booth so as not to spew powder everywhere, which looked nice, although you could just use a big cardboard box. A custom jig to hang the parts while spraying, and she was ready to go.

If you are on a budget, by the way, you can get a kit from Harbor Freight for a bit less. It probably has fewer accessories, and we don’t know how it compares, but it is an option for much less money. Either way, you need a small air pressure regulator, and you also need a dryer and a filter for the air because you need dry and clean air so as not to contaminate the powder.

The part is grounded, and the gun charges the powder as it sprays. Once coated, you stick the part in the oven for about 20 minutes. The results look good and, compared to a painted part, the coating was super tough. For intricate parts, you can heat the part and then dip it in fluid-like powder. If you prefer to stick to regular powder coating, we have some tips.

Continue reading “Getting Geared Up For Home Powder Coating”

Humans And Balloon Hands Help Bots Make Breakfast

Breakfast may be the most important meal of the day, but who wants to get up first thing in the morning and make it? Well, there may come a day when a robot can do the dirty work for you. This is Toyota Research Institute’s vision with their innovatively-trained breakfast bots.

Going way beyond pick and place tasks, TRI has, so far, taught robots how to do more than 60 different things using a new method to teach dexterous skills like whisking eggs, peeling vegetables, and applying hazelnut spread to a substrate. Their method is built on generative AI technique called Diffusion Policy, which they use to create what they’re calling Large Behavior Models.

Instead of hours of coding and debugging, the robots learn differently. Essentially, the robot gets a large flexible balloon hand with which to feel objects, their weight, and their effect on other objects (like flipping a pancake). Then, a human shows them how to perform a task before the bot is let loose on an AI model. After a number of hours, say overnight, the bot has a new working behavior.

Now, since TRI claims that their aim is to build robots that amplify people and not replace them, you may still have to plate your own scrambled eggs and apply the syrup to that short stack yourself. But they plan to have over 1,000 skills in the bag of tricks by the end of 2024. If you want more information about the project and to learn about Diffusion Policy without reading the paper, check out this blog post.

Perhaps the robotic burger joint was ahead of its time, but we’re getting there. How about a robot barista?

Continue reading “Humans And Balloon Hands Help Bots Make Breakfast”

Hackaday Prize 2023: Computer Vision Guides This Farm Mower

It’s a problem common to small-scale mixed agriculture worldwide, that of small areas of grass and weeds that need mowing. If you have a couple of sheep and enough electric fence there’s one way to do it, otherwise, if you rely on machinery, there’s a lot of hefting and pushing a mower in your future. Help is at hand, though, thanks to [Yuta Suito], whose pylon-guided mower is a lightweight device that mows an area defined by a set of orange traffic cones. Simply set the cones around the edge of the plot, place the mower within them, and it does the rest.

At its heart is a computer vision system that detects the cones and estimates distance from them by their perceived size. It mows in a spiral pattern by decreasing the cone height at which it turns, thus covering the whole area set out. Inside is a Raspberry Pi doing the heavy lifting, and because it’s designed for farmland rather than lawns, it has an adaptive track system to deal with obstacles. In its native Japan there is an ageing rural population, so it is particularly suitable for being operated by an older person. See it in action in the video below the break.

A robotic mower aimed at farms is certainly unusual here, but we’ve seen a lot of more conventional lawnmowers.

Continue reading “Hackaday Prize 2023: Computer Vision Guides This Farm Mower”

Powder Your Prints For Baby-Smoothness

Layer lines are a dead giveaway to non-normies that a thing was 3D printed. There are things you can do to smooth them — sanding, chemical smoothing, and fillers come to mind. Although this technique technically uses all three, it starts with something very simple.

In the video after the break, [DaveRig] gets right to the point: baby powder and resin mixed together make a fine smoothing agent when cured. Having read about it online, he decided to give it a try.

Starting with a half sphere that had admittedly pretty big layer lines, [DaveRig] mixed up enough resin and baby powder to make the consistency of milk or cream. Then he put five coats on, curing and sanding with 120 in between each one.

Then it’s on to standard post-processing stuff. You know, wipe it down with alcohol, sand it a little more, wet sand, and then it’s on to the airbrush and clear-coat. The end result looks to be as smooth as your average bowling ball, as you can see in the main photo.

What’s your favorite post-processing method? Have you tried annealing them in salt?

Continue reading “Powder Your Prints For Baby-Smoothness”

A wooden digital clock with a metal knob on one end

Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock

Modern life can be stressful. Many of us struggle to balance work, family, exercise, and an ever-growing list of hacking projects, all of which claim our attention during the day. If you sometimes feel that those 24 hours just don’t cut it, you might be in luck: [HIGEDARUMA] has built a clock that can stretch your day by up to five hours.

Sadly, [HIGEDARUMA] hasn’t invented time travel (yet). What his clock does instead is slow down its own pace in the evening to push back the midnight hour. When it finally does reach 12:00 a.m., the clock’s pace is accelerated to ensure it’s back in sync with the rest of the world by six in the morning. It might seem silly, but there is a certain logic to it: [HIGEDARUMA] explains that evenings felt much longer when he was a child and that he would like to try and experience that again. Our sense of time may change over our lifetime, even if the actual passage of time doesn’t.

Timescales aside, the 29-hour clock is a neat piece of work from a hardware point of view. The case is made from 4 mm laser-cut MDF with wood-grain foil on the outside. Inside, there’s an ESP32 to run the show, along with an RTC module and three four-digit seven-segment LED displays. A chunky “volume” knob on the front lets you choose how much you’d like your day to be stretched.

We’ve seen clocks with non-linear dials before, as well as extremely linear ones, but this might be the first one with a non-constant pace. It makes us wonder what the passage of time feels like for those frozen in ice for 46,000 years.

Continue reading “Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock”

Input Device Gets New Input Device

One of the nicest things about a trackpoint is that you don’t have to take your hands off the keyboard. One of the worst things about a trackpoint is its usual placement, which can force a weird hand position that can cause repetitive stress injury.

[notshitashi] has done an incredible job of adding a trackpoint to the Glove80 wireless split keyboard. It must have been really scary to drill holes in the palm rests of such a nice and not-cheap keyboard, but [notshitashi] soldiered on nonetheless, and the end result looks great.

Starting with a trackpoint module from Ali, [notshitashi] found that it didn’t fit the palm rest without being trimmed down, so they desoldered the business part from the main PCB and reattached it with wires. They had to go through a few of them to get it just right, but that’s the way it goes sometimes.

[notshitashi] calls this “a bit of a cheat and dirty hack” because the trackpoint module is wired and, therefore, a separate USB HID. Yes, the Glove80 has GPIO connectors in both halves, but the problem is that stock ZMK has yet to support pointing devices. We don’t care; this is quite the elegant hack anyway.

Want to jazz up your mechanical keyboard with a trackpoint? Here’s a handy guide. Or, you can perform a transplant.

Hackaday Prize 2023: A 3D Printed Vertical Wind Turbine

We feature a lot of off-grid power projects here at Hackaday, whether they’re a micropower harvester or something to power a whole house. Somewhere in the middle lies [esposcar90]’s 3D-printed vertical wind turbine, which it is claimed can deliver 100 watts from its diminutive tabletop package.

It’s designed to be part of a package with another turbine but makes a very acceptable stand-alone generator. The arms have large scoop-like 3D-printed vanes and drive a vertical shaft up the centre of the machine. This drives a set of satellite gears connected to a pair of DC permanent magnet motors, which do the work of generating. For different wind situations, there are even some differing STL gear choices to speed up the motors. The motors are 12V devices, so we’re guessing the output voltage will be in that ballpark. However, it’s not made entirely clear in the write-up.

Continue reading “Hackaday Prize 2023: A 3D Printed Vertical Wind Turbine”