It Turns Out, A PCB Makes A Nice Watch Dial

Printed circuit boards are typically only something you’d find in a digital watch. However, as [IndoorGeek] demonstrates, you can put them to wonderful use in a classical analog watch, too. They can make the perfect watch dial!

Here’s the thing. A printed circuit board is fundamentally some fiberglass coated in soldermask, some copper, maybe a layer of gold plating, and with some silk screen on top of that. As we’ve seen a million times, it’s possible to do all kinds of artistic things with PCBs; a watch dial seems almost obvious in retrospect!

[IndoorGeek] steps through using Altium Designer and AutoCAD to layout the watch face. The guide also covers the assembly of the watch face into an actual wrist watch, including the delicate placement of the movement and hands. They note that there are also opportunities to go further—such as introducing LEDs into the watch face given that it is a PCB, after all!

It’s a creative way to make a hardy and accurate watch face, and we’re surprised we haven’t seen more of this sort of thing before. That’s not to say we haven’t seen other kinds of watch hacks, though; for those, there have been many. Video after the break.

Continue reading “It Turns Out, A PCB Makes A Nice Watch Dial”

Raptor DID. Photo by Matt Mechtley.

How Jurassic Park’s Dinosaur Input Device Bridged The Stop-Motion And CGI Worlds

In a double-blast from the past, [Ian Failes]’ 2018 interview with [Phil Tippett] and others who worked on Jurassic Park is a great look at how the dinosaurs in this 1993 blockbuster movie came to be. Originally conceived as stop-motion animatronics with some motion blurring applied using a method called go-motion, a large team of puppeteers was actively working to make turning the book into a movie when [Steven Spielberg] decided to go in a different direction after seeing a computer-generated Tyrannosaurus rex test made by Industrial Light and Magic (ILM).

Naturally, this left [Phil Tippett] and his crew rather flabbergasted, leading to a range of puppeteering-related extinction jokes. Of course, it was the early 90s, with computer-generated imagery (CGI) animators being still very scarce. This led to an interesting hybrid solution where [Tippett]’s team were put in charge of the dinosaur motion using a custom gadget called the Dinosaur Input Device (DID). This effectively was like a stop-motion puppet, but tricked out with motion capture sensors.

This way the puppeteers could provide motion data for the CG dinosaur using their stop-motion skills, albeit with the computer handling a lot of interpolation. Meanwhile ILM could handle the integration and sprucing up of the final result using their existing pool of artists. As a bridge between the old and new, DIDs provided the means for both puppeteers and CGI artists to cooperate, creating the first major CGI production that holds up to today.

Even if DIDs went the way of the non-avian dinosaurs, their legacy will forever leave their dino-sized footprints on the movie industry.

Thanks to [Aaron] for the tip.


Top image: Raptor DID. Photo by Matt Mechtley.

Laser Art Inspired By The Ford Motor Company

Have you ever heard of Fordite? It was a man-made agate-like stone that originated from the Ford auto factories in the 1920s. Multiple layers of paint would build up as cars were painted different colors, and when it was thick enough, workers would cut it, polish it, and use it in jewelry. [SheltonMaker] uses a similar technique to create artwork using a laser engraver and shares how it works by showing off a replica of [Van Gogh’s] “Starry Night.”

A piece of Fordite on a pendant

The technique does have some random variation, so the result isn’t a perfect copy but, hey, it is art, after all. While true Fordite has random color layers, this technique uses specific colors layered from the lightest to the darkest. Each layer of paint is applied to a canvas. Only after all the layers are in place does the canvas go under the laser.

The first few layers of paint are white and serve as a backer. Each subsequent layer is darker until the final black layer. The idea is that the laser will cut at different depths depending on the desired lightness. A program called ImagR prepared the image as a negative image. Adjustments to the brightness, contrast, and gamma will impact the final result.

Of course, getting the exact power settings is tricky. The best result was to start at a relatively low power and then make more passes at an even lower power until things looked right. In between, compressed air cleared the print, although you have to be careful not to move the piece, of course.

There are pictures of each pass, and the final product looks great. If art’s not your thing, you can also do chip logos. While the laser used in this project is a 40-watt unit, we’ve noted before that wattage isn’t everything. You could do this—probably slower—with a lower-powered engraver.

Fordite image By [Rhonda]  CC BY-SA 2.0.

A rough cut piece of wood sits on a workbench. A light and a tumbleweed are mounted on top so that the light shines through the tumbleweed. A woman in a ball cap and white tank top is crouched in the background smiling.

Cisco Ball Is The Tumbleweed Opposite Of A Disco Ball

Inspiration can strike a maker at any moment. For [Laura Kampf], it happened in the desert when she saw a tumbleweed.

Tumbleweeds roll through the western United States, hitting cars on the interstate and providing some background motion for westerns. [Kampf] found the plant’s intricate, prickly structure mesmerizing, and decided to turn it into a piece of contemplative kinetic art.

[Kampf] attached the tumbleweed to a piece of wood using epoxy and mounted it to what appears to be a worm drive motor nestled inside an interestingly-shaped piece of wood. As the tumbleweed turns, a light shines through it to project a changing shadow on the wall to “create silence, it creates calmness, it takes away from the noise that surrounds it.” While [Kampf] has some work to do to get the sculpture to its finished state, we can get behind her mantra, “The most important thing about the phase of execution is to get started.”

Are you looking for some projects of your own to help you find calm? How about some ambient lighting, a sand drawing table, or a music player that keeps things simple?

Continue reading “Cisco Ball Is The Tumbleweed Opposite Of A Disco Ball”

Pixel Art And The Myth Of The CRT Effect

The ‘CRT Effect’ myth says that the reason why pixel art of old games looked so much better is due to the smoothing and blending effects of cathode-ray tube (CRT) displays, which were everywhere until the early 2000s. In fits of mistaken nostalgia this has led both to modern-day extreme cubism pixel art and video game ‘CRT’ filters that respectively fail to approach what pixel art was about, or why old games looked the way they did back with our NES and SNES game consoles. This is a point which [Carl Svensson] vehemently argues from a position of experience, and one which is likely shared by quite a few of our readers.

Although there is some possible color bleed and other artefacts with CRTs due to the shadow mask (or Sony’s Trinitron aperture grille), there was no extreme separation between pixels or massive bleed-over into nearby pixels to create some built-in anti-aliasing as is often claimed unless you were using a very old/cheap or dying CRT TV. Where such effects did happen was mostly in the signal being fed into the CRT, which ranged from the horrid (RF, composite) to the not-so-terrible (S-Video, component) to the sublime (SCART RGB), with RGB video (SCART or VGA) especially busting the CRT effect myth.

Where the pixel art of yester-year shines is in its careful use of dithering and anti-aliasing to work around limited color palettes and other hardware limitations. Although back in the Atari 2600 days this led to the extreme cubism which we’re seeing again in modern ‘retro pixel art’ games, yesterday’s artists worked with the hardware limitations to create stunning works of arts, which looked great on high-end CRTs connected via RGB and decent via composite on the kids’ second-hand 14″ color set with misaligned electron guns.

AI Image Generator Twists In Response To MIDI Dials, In Real-time

MIDI isn’t just about music, as [Johannes Stelzer] shows by using dials to adjust AI-generated imagery in real-time. The results are wild, with an interactivity to them that we don’t normally see in such things.

[Johannes] uses Stable Diffusion‘s SDXL Turbo to create a baseline image of “photo of a red brick house, blue sky”. The hardware dials act as manual controls for applying different embeddings to this baseline, such as “coral”, “moss”, “fire”, “ice”, “sand”, “rusty steel” and “cookie”.

By adjusting the dials, those embeddings are applied to the base image in varying strengths. The results are generated on the fly and are pretty neat to see, especially since there is no appreciable amount of processing time required.

The MIDI controller is integrated with the help of lunar_tools, a software toolkit on GitHub to facilitate creating interactive exhibits. As for the image end of things, we’ve previously covered how AI image generators work.

A Demo Party On A Chip

The demoscene has provided our community with its artistic outlet since the first computers which could handle graphics, and has stayed at the forefront of technology all the way. For all that though, there’s a frontier it hasn’t yet entirely conquered, which exists in the realm of silicon. To address this cones the ever awesome Tiny Tapeout, who are bringing their ASIC-for-the-masses scheme to the world of demos with an ASIC demo competition.

With a closing date of 6th of September, all accepted entrants get a free Tiny Tapeout tile for their entry. Entries are limited to two tiles or less. with VGA and audio outputs via a specified PMOD pinout. There are a variety of categories including the expected best sound and best graphics, but among them we’re most interested by the mixed signal one that includes analogue circuitry.

Tiny Tapeout has been a particularly exciting project over the last couple of years, truly breaking new ground for the hardware hacker world. Since they’ve just recently been able to start doing some analog design on the chips, we’re excited to see what people come up with for this competition, and we hope it will provide significant advancement to the art. In the best tradition of the demo scene, they’ve even made an intro for the competition, which you can see below the break.

Want to know what all the fuss is about? Start here!

Continue reading “A Demo Party On A Chip”